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ABSTRACT:  The mapping of shorelines and monitoring of their changes is challenging due to the large variation 

in shoreline position related to seasonal and tidal patterns. This study focused on a flood-prone area in the north of 

Java. Shoreline mapping and monitoring are needed to support efforts to recover the eroded land and to reduce the 

rapid shoreline degradation. We show the possibility of using fuzzy-crisp objects to derive shoreline positions as 

the transition zone between the classes water and non-water. Fuzzy c-means classification (FCM) was used to 

estimate the membership of pixels to these classes. A shoreline is represented by a transition zone between the 

classes, and its spatial extent was estimated by using fuzzy-crisp objects. We analyse the differences between 

successive shorelines from multi-temporal images. A change category was defined if the membership difference 

between two years T1 and T2, represented by change magnitude values, differs from zero, whereas a no-change 

category corresponded to a magnitude equal to zero. This resulted into an overall change magnitude and the change 

directions of the shoreline. It allowed us to jointly identify the trend of the fluctuating shoreline and the uncertainty 

distribution. Fuzziness of the positions of the shoreline was assessed by using change confusion values. The overall 

accuracies of FCM resulted into a fuzzy error matrix (FERM) with values ranging from 0.84 to 0.90. Change areas 

were identified as well as the magnitude, direction and confusion values of the changes for the observed objects at 

the pixel level. The proposed method provided a way to analyse changes of shorelines as fuzzy objects and is well-

suited to apply to coastal areas around the globe.  

 

1. INTRODUCTION 

 

The study of changing shoreline is essential to assist in the design of effective coastal protection (Jin et al. 2015), 

developing hazard maps (Snoussi et al. 2009), formulating policies regarding coastal development (O’Connor et al. 

2010) and for coastal research and monitoring (Tamassoki et al. 2014). A shoreline is defined as the intersection of 

coastal land and water surface indicating the water edge movements of which the position is changing through time 

due to different water levels during high tide and low tide (Boak and Turner 2005; Davidson-Arnott 2010; Bird 

1985). Shorelines have changed their dynamics at varying rates as a response to coastal processes such as sediment 

erosion, transportation and deposition along the shore. Shoreline changes can be estimated over various time scales 

and result into long-term, cyclic and local random variation. Long-term variation includes variation due to the land 

subsidence, relative sea level rise and sediment storage. Cyclic variation is related to the tide cycles or seasons, 

whereas waves, storms and floods cause random variation of a local character.  

 

Previous studies have proposed several ways of generating shoreline positions. Shoreline survey and 

photogrammetry have been the primary technology for shoreline mapping, yet both methods are time consuming 

and expensive (Li et al. 2002). Therefore, image classification is widely used to detect shoreline positions. Most 

studies regarding shoreline detection have used hard classification such as thresholding, water indices, and manual 

digitizing (Ghosh et al. 2015; Senthilnatha et al. 2012; Marfai et al. 2008), and only a few applied soft 

classifications (Muslim et al. 2006; Dewi et al. 2016). Shoreline represents the physical interface between coastal 

land and water surface which varies continuously over time. Moreover, the boundary between coastal land and 

water is imprecise and there is a gradual transition between them. Due to the fuzziness of shoreline positions, using 

hard classification for shoreline mapping could produce errors on the classification results, since hard classification 

assigns a single label to a pixel based on its highest membership. To overcome this limitation, fuzzy classification 

is explored to detect shoreline positions. In our previous work, we proposed two approaches: 1) the first approach 

derived shorelines by applying a threshold equal to 0.5 to the membership and depicted shorelines as a single line; 

and 2) the second approach derived shorelines as a margin determined by the choice of thresholds on the 

membership function (Dewi et al. 2016). In this work, we proposed the third approach and shorelines are 



 

 

represented as the transition zone between water and land. In this case, points at which membership     larger than 

0.99 are the interior of objects, whereas points with             would belong to transition zones and points 

with        do not belong to objects.  

 

The objective of this study is to develop a fuzzy method that is useful for monitoring the changes of a fuzzy 

shoreline. The method is based on fuzzy classification and change vector analysis (CVA) was used to estimate the 

changes of the successive shorelines. This CVA provides an overall change magnitude and change directions 

showing the trend of the fluctuating shoreline from 2013 to 2015. A series of Landsat images are used to detect 

shoreline positions while taking tides into account. For this study, the uncertainty of shoreline positions was 

estimated by means of confusion indices. The method is applied to an area in Java - Indonesia, where the changes 

of shoreline are associated with coastal inundation.  

 

2. METHODOLOGY 

 

2.1. Study Area 

 

The study area is located in the northern part of Central Java, Indonesia (see Figure 2a) characterized by a low-land 

landscape extending 5 km from east to west with elevation less than 5 m above mean sea level (AMSL). Two types 

of flood regularly occur: (1) floods caused by a tidal flood occurring daily (Harwitasari and van Ast 2011); and (2) 

floods due to poor drainage systems during rainy seasons. The coastal inundation has increased recently in terms of 

both frequency and duration. Some factors such as extreme winds and waves contribute to this increase over the 

short term. Furthermore, over the long term, other causes such as land subsidence, mangrove conversion, beach 

reclamation and an extended seaport are the causes for the increase of coastal inundation (Marfai and King 2007).  

 

2.2. Satellite Images and Data Pre-processing 

 

Multi-temporal images from the Landsat OLI/TIRS (Operational Land Imager/Thermal Infrared Sensor) with 30 m 

spatial resolution were used to monitor the shoreline change between 2013 and 2015. Those images were acquired 

at the low tides (Table 1). The classification results were validated against three higher resolution images.  

 

Table 1. Landsat OLI/TIRS images captured in the low tides supplemented by tide level and reference images  
Acquisition Date Astronomical 

Tide Level (m) 

Reference Data Acquisition Date Astronomical 

Tide Level (m) 

Reference Data 

23 May 2013 -0.1 Pleiades  

(27 Feb 2013) 

1 Oct 2014 -0.2 Spot 6  

(5 Oct 2014) 12 Sept 2013 -0.1 18 Nov 2014 -0.3 

14 Oct 2013 -0.3 29 May 2015 +0.04  

Sentinel 2 

(26 Dec 2015) 

1 Dec 2013 -0.3 18 Sept 2015 -0.1 

10 May 2014 -0.01 Spot 6  

(5 Oct 2014) 

20 Oct 2015 -0.3 

15 Sept 2014 -0.2 21 Nov 2015 -0.3 

 

Pre-processing for Landsat and reference images comprises two steps: 1) histogram minimum adjustment  

(Hadjimitsis et al. 2010); and 2) geo-referencing implemented using >100 ground control points (GCP) collected 

from road intersections and other prominent features. The root mean square error (RMSE) values were less than 0.1 

pixels. Reference images were rectified using the 2015 ortho-image. Geo-registration of Landsat was conducted 

using geometrically corrected reference images. For accuracy assessment purpose, pixel size of Spot 6 was 

resampled to 10 m, so that spatial resolutions of Pleiades, Spot 6, Sentinel 2 and Landsat were in the ratio 15:3:3:1. 

Further, to reduce the variance of Pleiades, a smoothing was performed using the average filter with 3x3 window 

size. 

 

2.3. Deriving Fuzzy Shoreline and Its Uncertainty 

 

To discriminate the land and water classes, we applied the FCM method developed by Bezdek et al. (1984) with the 

number of classes    . The membership values ( ) calculated using FCM have values ranging from 0 to 1. 

Detailed descriptions regarding the FCM algorithm are available in Bezdek et al. (1984), whereas explanations 

regarding membership function, pixel labelling, and parameter estimation for FCM are explained in Dewi et al. 

(2016). After classification, for each land cover class, memberships were represented as a raster layer and the 

number of raster layers is equal to the number of classes:  water and non-water memberships, each with fuzzy 

regions and boundaries. To determine their spatial extent, we combined objects from different layers into one layer 

based on the work conducted by Cheng (1999). We consider the boundaries between water and non-water are fuzzy 

and forming a transition zone that we call shoreline. The decision function     assigned pixel k which has 



 

 

membership value     to water class (w). If (        ) then let (     ) then it means the pixels belong to 

water class. If (             ) then let (       ) then it classifies pixels as the transition zones, and if 

(        ) then let (     ) then it means the pixels not belong to water and define the pixels as the non-water 

class. The uncertainty of shoreline positions was estimated by a measure of confusion index CI estimated as one 

minus the difference between the first and the second highest membership values    
  and    

  respectively 

(Burrough et al. 1997).  

 

To quantify the accuracy of the FCM classifier, we used a fuzzy error matrix developed by Pontius and Cheuk 

(2006). For accuracy assessment, soft reference images were generated by applying FCM classification to the 

Pleiades, Spot 6, and Sentinel 2. To calculate the agreement in FERM, a group of 225 pixels (15x15) of Pleiades, 9 

pixels (3x3) of Spot 6 and 9 pixels (3x3) of Sentinel 2 were averaged to achieve the pixel dimension of Landsat. 

Using this reference data, membership of 200 pixels randomly selected from both classified and reference images 

were computed. An overall accuracy was computed for each error matrix. 

 

2.4. Shoreline Change Detection and Change Uncertainty 

 

The changes of shoreline were assessed by simultaneous analysis of multi-temporal images using pixel-wise change 

vector analysis (CVA) to distinguish the changes in terms of magnitude and direction (Lambin and Ehrlich 1997; 

Singh and Talwar 2015). For establishing the changes over time, shoreline membership images of the same year 

were stacked together and then compared with the stack of shoreline membership images of the next year with 

corresponding seasons. If membership values to water class (   ) of two images in years    and    are given by 

               
   and                

   respectively, a change vector is defined as: 

 

 

        

 

 
 
      

      

      

       

 
 

 (1) 

 

where     includes all the change information between two dates for a given pixel. The length of the change 

vector indicates the magnitude of change and its direction indicates the nature of the change showing the trend of 

water membership in every pixel (Lambin and Strahler 1994; Lunetta and Elvidge 1999). The change magnitude 

      is computed by determining the Euclidean distance between the two images: 

 

                
          

          
          

  (2) 

 

This change magnitude represents the total of membership differences between two years. A change category was 

defined when the membership difference between two years    and    is larger than zero, whereas a no-change 

category is related to a magnitude equal to zero. Change direction was determined by evaluating the membership 

difference between images in two successive years starting by calculating the number of change combinations 

(CC): 

  

        (3) 

 

where cd refers to the types of change direction when we compare the stack of shoreline membership images from 

both years per corresponding seasons and z refers to the number of membership image pairs. The change vector 

(  ) showing membership difference between a pair of shoreline images in    and    from corresponding seasons 

needed to be estimated: a) If the membership difference between pair of images in years    and    is less than zero 

then       showing a decrease of water membership in   ; b) If the membership difference is larger than zero 

then       showing an increase of water membership in   ; c) If the membership difference is equal to zero 

then      showing that the membership in    and    were the same. Total change vector (TCV) values were 

defined as: 

                     (4) 

 

CV1 refers to       , CV2 refers to       , CV3 refers to       , and CV4 refers to       . Total change 

vector values vary from -4 up to +4. Finally, the change direction (Chg.dir) categories showing the degree of 

change direction to water membership were obtained by grouping the direction values: a) TCV from +1 up to +4  

were grouped as positive change; b) TCV from -4 up to -1  were grouped as negative change; c) TCV equal to 0 



 

 

having membership differences equal to 0 for all CV1, CV2, CV3 and CV4 were classified as no-change; d) Total 

values equal to 0 showing unclear change directions for CV1, CV2, CV3 and CV4 were classified as no-direction. 

Based upon these results, the change area of a specific category was defined as: 

 

                           (5) 

 

where           is number of pixels of a specific change category,       is area of pixel k equal to 30 x 30 (m
2
). 

The change uncertainty of changed areas was estimated using confusion index CI as the indicator to estimate the 

change confusion. If confusion indices of two images in years    and    are given by                
   and 

               
  , respectively, the change confusion       is computed as: 

 

                
          

          
          

  (6) 

 

3. RESULTS 

 

3.1. Fuzzy Shorelines and Uncertainty Estimation 

 

The results of FCM classification are presented in Figure 1a-b with the values ranging from 0-1. Figure 1c presents 

the core of water and non-water with their transition zone representing shoreline positions. The accuracy values 

vary from 0.84 – 0.90. Figure 1d presents the confusion index indicating the classification uncertainty when 

deriving shorelines. Figure 1e shows shorelines with fuzziness. These ambiguous areas indicate transition zones as 

the position of shorelines. The extent of these shorelines is determined by natural condition of the coastal areas, for 

example, a wider shoreline is found in a muddy area or at a gradual coast, whereas a narrow shoreline is usually 

found along an elevated coast or at the shoreline with embankment. 

 

 
Figure 1. FCM results show the memberships of water (a) and non-water (b). The core of water, non-water and the 

transition zone indicating the shoreline positions (c); confusion index to quantify the classification uncertainty (d); 

and shoreline with fuzziness (e).  

 

3.2. Shoreline Change Detection  

 

The change magnitude and the change and no-change categories of shoreline are displayed in Figure 2b-c. Low 

change magnitude values presented as green pixels correspond to a small membership difference between water 

membership images in    and   , whereas red pixels are associated with high magnitude corresponding to a large 

membership difference. The fuzziness of the change of shorelines is presented in Figure 2d-e. Low change 

confusion corresponds to the small confusion indices difference between images in    and    while high change 

confusion was associated with large confusion indices difference. The representation of change direction of 

shoreline showing the trend of water membership can be seen in Figure 3a-b. Figure 3c-d show the magnitude of 

the change identified for each change direction in 2013-2014 and 2014-2015, respectively. 



 

 

 
Figure 2. The study area with Landsat RGB 542 as the background. Red pixels refer to vegetation, green pixels 

refers to water and white and grey pixels refer to built-up areas (a);. The magnitude of shoreline change from 2013-

2014 (b) and from 2014-2015 (c); The fuzziness of the shorelines is represented by change confusion values in 

2013-2014 (d) and in 2014-2015 (e), respectively.  

 

 
Figure 3. The representation of change direction of shorelines in 2013-2014 (a); and in 2014-2015 (b); and the 

magnitude of each change direction category for shoreline in 2013-2014 (c); and in 2014-2015 (d), respectively. 

 

 
Figure 4. The change confusion indices for each change direction category in 2013-2014 (a); and in 2014-2015 (b), 

respectively. Shades of violet pixels represent change confusion values for the area with positive changes to water 

membership, and shades of moss green pixels show change confusion values for the area with negative changes. 

The change confusion values for the no-direction category are represented by shades of orange. 



 

 

The intensity of the change confusion is identified for each change direction category in 2013-2014 and 2014-2015 

as can be seen in Figure 4a and Figure 4b, respectively. Three change confusion values for each category including 

positive, negative and no-direction categories are presented by shades of violet, shades of moss green and shades of 

orange colours, respectively. Darker colours present higher change confusion values for each change category. 

 

3.3. Multi-year Pattern of Water Membership Changes 

 

For each pixel, the resulting change vector provides information regarding its change direction and magnitude 

which reveals that each combination represents specific type of change processes occuring in the field: 

a) High change direction and high magnitude; indicates a continuous change of an area to a certain direction with a 

relatively large intensity. A consistency to positive change indicates a persistence of water influence as those 

pixels show an increase of water membership in multitemporal images. This probably corresponds to the land 

subsidence and coastal inundation (Figure 5a,c). On the other hand, a continuosly decreasing water membership 

in multitemporal images categorized as negative change direction may indicate a success in shoreline protection 

scheme (Figure 5b,d) such as the project Building with Nature which involves building permeable dams refered 

to as sediment traps (NWP 2016);  

 

 
Figure 5. Multi-years pattern of water membership changes showing a high change direction to positive (a); and to 

negative change directions (b) with high change magnitude to positive direction (c) and to negative directions (d). 

 

b) Low change direction and high magnitude; indicates an abrupt change which may result from random events 

such as coastal flooding triggered by spring tides, extreme waves and winds. Since the magnitude of the changes 

is high and the change is sudden, this type of change may indicate a higher risk (Figure 6a,d);  

c) High direction and low magnitude; indicates a continuous change of an area to be influenced by water which 

could be be due to cyclical tides and coastal processes, for example changes in the water turbidity (rectangle 

sites in Figure 6b,e), sediment accretion (ellipse sites in Figure 6b,e), and flooded land. Even though the 

magnitude is low, since the changes occur frequently, this type of change may also give a higher risk for the 

area classified as positive change direction. In a longer observation, this location may have a risk of coastal 

inundation as well. 

d) Low direction and low magnitude; probably indicate an undisturbed environment. In this study, this category 

mainly occurs in water areas, probably due to the changes in water turbidity (ellipse sites Figure 6c,f) and in 

small patches of the coastal land probably resulting from changes in soil moisture (rectangle sites Figure 6c,f). 

 



 

 

 
Figure 6. Multi-year patterns of water membership change showing three types of change process occuring in the 

field: a low change direction to positive change (a) with high change magnitude values to positive direction (d); a 

high change direction to positive change (b) with low change magnitude values to positive direction (e); and a low 

change direction to negative change (c) with low change magnitude values to positive direction (f). 

 

4. DISCUSSION 

 

In this study, the dynamics of fuzzy shorelines has been assessed using fuzzy classification and a raster-based 

change detection technique. FCM classification was used to discriminate the land and water classes and to estimate 

their memberships. Shorelines and their changes were presented as fuzzy areas and their extents were determined 

using fuzzy-crisp objects as the transition zone between water and non-water. The change of shoreline was 

explained in terms of change magnitude and change direction using CVA, allowing us to see the trend of the 

fluctuating shoreline over time. The uncertainty of the fuzzy shoreline was described by means of confusion indices 

corresponding to the existential and extential uncertainty of the shoreline. Existential uncertainty expresses the 

uncertainty of the existence of shoreline in reality. Extensional uncertainty implies that the extent of the shoreline 

can be determined with limited certainty. In addition, the changed areas of the fuzzy shoreline are thus associated 

with the distribution of change confusion indices showing the degree of uncertainty of the changes. It can be seen 

from the results that a location with a higher change magnitude, has higher change confusion as well. This 

corresponds to the larger differences between the membership and confusion indices in    and   . Change direction 

was assessed to analyse the characteristics of the change by evaluating the membership differences between water 

memberships for the consecutive years quantifying the overall trend of water membership over the observation 

period.  

 

The analysis of information provided by the change magnitude and direction using water membership images 

reveals that each change combination represents a specific type of change process. The processes indicated from the 

results could vary depending on the locations such as shoreline changes due to floods caused by land subsidence, 

floods caused by seasonal variation, abrupt shoreline changes due to extreme tides and waves, and the changes of 

water turbidity and soil moisture triggered by daily weather events. In this research, these specific types of process 

were explained on the basis of the analysis of four images for each observation period. The seasonal variation of 

shorelines and whether the changes would lead to a permanent coastal inundation could not be fully assessed 

because only four observations per year were compared. This shows that the change vector analysis is sensitive to 

the length of the stacked period. 

 

Analysis of the shoreline changes in the northern coastal area of the Central Java Province shows the changes of 

shoreline positions from 2013 until 2015. This could be related to the processes that shape shorelines which are 

determined by the interaction of several factors for example: 1) the change of sea-level; 2) the amount of sediment 

supplied to the shore by rivers; 3) the movement of the sediment by marine processes; and 4) the role of waves, 

currents, tides and winds in moving the sediment. Furthermore, sediment transport is not constant, and it is 

constantly subject to change. The alteration of sediment transport can come from changes in water flow, water 

level, weather events and human influence. In addition, from the previous studies it has been mentioned that this 

location has suffered from the changing of shorelines for more than 20 years due to coastal inundation accelerated 



 

 

by, for example land subsidence, sea-port development, and ground water extraction. Many attempts have been 

made to combat coastal inundation and erosion of 1.3 kilometres of coast in the study area such as elevated road, 

raised floor of the house, breakwater, and mangrove planting.  

 

5. Conclusion 

 

In this article, we present a method to identify shoreline positions and their changes as a fuzzy area including a 

measure of change confusion. Shoreline changes could be detected, and the method provided information regarding 

the change magnitude and the trend of water membership in every pixel. Our results reveal that this information 

represents specific type of change processes and shows a multi-year pattern of water membership changes over 

time. We can conclude that the proposed method can assess changes in a shoreline by taking into account that it is a 

fuzzy boundary. 

 

 The change area estimation, change magnitude and direction of the shorelines may support local government and 

stakeholders in monitoring the change of fuzzy shorelines. Combining information given by this research with other 

information such as distribution of population and other facilities could help to determine which location needs to 

be prioritized in disaster preparedness and response. 
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