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ABSTRACT:

Matching Persistent Scatterers (PS) to airborne optical imagery is one possibility to augment applications and deepen the understanding
of SAR processing and products. While recently this data registration task was done with PS and optical nadir images the alternatively
available optical oblique imagery is mostly neglected. Yet, the sensing geometry of oblique images is very similar in terms of viewing
direction with respect to SAR. We exploit the additional information coming with these optical sensors to assign individual PS to single
parts of buildings. The key idea is to incorporate topology information which is derived by grouping regularly aligned PS at facades
and use it together with a geometry based measure in order to establish a consistent and meaningful matching result. We formulate this
task as an optimization problem and derive a graph matching based algorithm with guaranteed convergence in order to solve it. Two
exemplary case studies show the plausibility of the presented approach.

1 INTRODUCTION

Synthethic aperture radar (SAR) is the only weather and illumina-
tion independent remote sensing imaging sensor available at the
moment. Several data processing techniques like Persistent Scat-
terer Interferometry (PSI) (Ferretti et al., 2001), SqueeSAR (Fer-
retti et al., 2011), and TomoSAR (Reigber and Moreira, 2000),
(Zhu and Bamler, 2010), (Fornaro et al., 2015) incorporate re-
peated acquisitions of the same scene and thus opened up a broad
range of applications. The high geometrical resolution of some
decimeters combined with a temporal change detection rate of up
to some mm/year make these techniques perfectly suitable for
building monitoring tasks. Even though, the assignment of single
TomoSAR points or Persistent Scatterers to buildings has been
conducted already (Schunert, 2014), it however remains unclear
in many cases which geometrical structure in the scene induces
the coherent signal reflection. One method to increase the in-
terpretability of particular PS is to use additional data holding
different information about the sensed object. Oblique optical
imagery is suitable for this purpose since it captures the earth’s
surface from a comparable viewing direction as SAR. Moreover,
airborne oblique imagery typically offers a higher geometrical
resolution than modern spaceborne SAR systems. Furthermore,
the spectrum of optical sensors matches the human visual system
allowing for an easy interpretation of the images. The combined
use of SAR and optical imagery enables investigations about the
physical nature of Persistent Scatterers and is a crucial step to-
wards a highly precise building monitoring system.

The main contribution of this paper is to derive a mathematically
proven optimal assignment of PS to their equivalents in optical
oblique imagery. In order to do so, we derive a graph matching
algorithm which finds the optimal relation between point features
from both data types. Due to the very different appearance of the
same facade in SAR and optical data, the data registration task is
complicated. Therefore, we introduce some constraints about the
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scene structure which are justified by model knowledge about the
regular alignment of facades.

In this paper we first give the context of related work followed
by some fundamental considerations about the appearance of fa-
cades in SAR and optical oblique images which constitutes the
motivation for the presented approach. The data registration ap-
proach is based on existing graph matching techniques. There-
fore, basic concepts and particular methods of graph matching
are presented in Section 3, followed by the employed method it-
self. The characteristics of the algorithm and its applicability is
discussed with the aid of two case studies in Section 5.

1.1 Related work

Fusing SAR and optical nadir imagery has been conducted sev-
eral times. The application context was mostly change detection.
A universal approach for the registration of highly heterogeneous
remote sensing data is given in (Mercier et al., 2008). A proba-
bilistic measure based on the Kullback-Leibler-divergence of lo-
cal statistics is derived under the assumption that even for very
heterogeneous sensors a certain dependence between the two het-
erogeneous data sources exists in unchanged areas. Similar to
this hypothesis we exploit the fact that regular patterns of fa-
cade objects and its inherent topology information remains con-
stant in both mapping geometries. (Brunner et al., 2010) extract
house model parameters, i.e. height, width, length, and gable
roof angle, of individual buildings from an optical nadir image
and use a ray tracer to simulate the corresponding SAR image.
Matching this simulation with the actual SAR acquisition can an-
swer the question whether a building has collapsed or not. This
approach is limited to detached buildings. A very similar ap-
proach is given in (Sportouche et al., 2011) resulting in a three-
dimensional model of flat roof isolated buildings derived from
a single nadir and a single high resolution spotlight TerraSAR-
X acquisition. Both approaches only regard objects on the scale
of single buildings. Our approach is finer-grained and considers
single PS and their actual position on the building facade which
allows for high precision monitoring tasks distinguishing differ-
ent parts of a building.



(a) optical image (b) SAR and PS

Figure 1: One facade in (a) an optical oblique image and (b) mean
amplitude SAR image with overlayed Persistent Scatteres in red.
The regular pattern of windows at the facade is perceivable in
both data types.

Facades in SAR data were also investigated in terms of approxi-
mating them as planes or curved faces (Zhu and Shahzad, 2014).
The actual position of individual scatterers at the facades are ne-
glected, however. A more detailed investigation of the scattering
mechanism with the help of a precise 3D building model was
conducted in (Gernhardt et al., 2015). The localization accuracy
in range and azimuth of few centimeters, but some decimeters in
elevation direction, could be confirmed by comparison with a pre-
cise three-dimensional building model. First attempts to exploit
the regularity of PS at facades were carried out in (Schunert and
Soergel, 2012) and (Schack and Soergel, 2015). Prior knowledge
about the alignment of facade elements and the assumption that
regular patterns of Persistent Scatterers are induced by regularly
spaced objects of the same type at the facade are used to improve
the elevation direction accuracy.

All above mentioned works consider the SAR data as two-dimen-
sional images or point clouds without regarding the individual
scattering mechanism. In order to study the physical nature of
Persistent Scatterers (or any other three-dimensional point like
features derived from a stack of SAR acquisitions) additional op-
tical data provides valuable information which was not used as
yet. Furthermore and to the best of our knowledge, a systematic
exploitation of the regularity for the purpose of fusing SAR data
and oblique optical imagery was not conducted up to now. This
paper continues previous work on grouping Persistent Scatterers
and aims at finding a correspondence in an optical oblique image
(Schack and Soergel, 2015). Our goal is to enable the assignment
of single PS to individual parts of the facade. In order to do so,
we formulate the task as an optimization problem which we solve
with a graph matching based algorithm. The registration quality
is optimized comprising two terms which evaluate the matching
result in terms of geometry and topology.

2 FACADES IN SAR AND OPTICAL OBLIQUE
IMAGES

Urban areas are often characterized by multistory buildings show-
ing regular patterns of windows or balconies at their facades. This
regular appearance provides the basis for the presented registra-
tion task since it remains perceivable in both types of data. Com-
paring the same facade in a SAR and an optical oblique image in
Figure 1 illustrates the different imaging properties of both sen-
sors. Nevertheless, the regular alignment of windows can be seen
in both data types. We use this very characteristic to establish
the registration between them. The regular alignment can be ex-
pressed as a lattice

L := {a · t1 + b · t2 + L0}
with: (a, b) ∈ Z ,

(1)
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Figure 2: Flowchart of the overall processing chain. The lattice
extraction in optical data is assisted by the projected grouping
results of PS. The matching step is in the focus of this paper and
is done in the image domain.

where t1 and t2 are the vectors describing the horizontal and ver-
tical spacing of windows at the facade. Repeating these basis
vectors a and b times, respectively, allows to address any point on
this lattice. The offset L0 translates the whole set L. For our task,
L0 can also be seen as the parameter that shifts the whole lattice
toward that position in the optical image which most likely cor-
responds to the image of the object which induces the Persistent
Scatterers. In order to find correspondences of PS in the optical
image, we exploit this lattice-like regularity and conduct a search
for the image correspondence that best fit the PSs.

2.1 Data preprocessing

The PS processing was conducted using the PSI-GENESIS pro-
cessor of DLR (Adam et al., 2003) and outputs a list of PS con-
taining the range and azimuth coordinate as well as the three-
dimensional geocoded object coordinates in UTM. Our method
uses this set of five-dimensional PS as input for a grouping pro-
cess in order to capture the regular alignment. In the data at hand,
mapped by SAR systems, this regularity is preserved and leads
to salient patterns in the range-azimuth plane (see Figure 1b for
an example). Compared to the point localization accuracy in the
two-dimensional range-azimuth geometry of a few centimeters,
the third coordinate of a Persistent Scatter, i.e. the elevation di-
rection, is worse by a factor of 20 (Gernhardt, 2012). This is
the reason why extracting the regular pattern is worthwhile in the
range-azimuth plane. Doing so requires the segmentation of the
total point cloud into subsets of PS presumably belonging to sin-
gle facades. This enables the separation of scatterers of adjacent
facades. The segmentation is best done in three-dimensional ob-
ject coordinates. Finally, a lattice representation corresponding to
(1) is fitted into the subsets. The grouping procedure itself is not
within the scope of this paper and the reader is referred to (Schack
and Soergel, 2014) for more details. A condensed preprocessing
workflow for both data types is shown in Figure 2. A worthwhile
detail is that the lattice extraction in the oblique imagery is aided
by the PS grouping results.

Point like features are derived in the optical oblique imagery as
matching partners for the PS. The main idea here is to exploit
the facade segmentation performed within the PS point cloud to
facilitate the localization of the corresponding facade in the op-
tical image. This is done by projecting the convex hull of all
three-dimensional PS into the oblique image. This transforms the
problem from detecting regular facade patterns in aerial images
to just extracting the regularity itself. Furthermore, the image be-
comes rectified in a way that the horizontal alignment of facade
objects coincides with the X-axis and the vertical alignment cor-
responds to the Y-axis of the image, respectively. We refer to
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Figure 3: A bipartite graph. The set of nodes are separated into
two subsets {L,P} in a way that edges are restricted to relations
between these two subsets. The edge labels µ are depicted as the
thickness. A possible bipartite matching is marked in red.

(Schack and Soergel, 2015) where the procedure of extracting a
lattice following equation 1 facilitated by PS data is described in
detail.

3 BIPARTITE GRAPH MATCHING

A graph is a common and well established structure to describe
and formalize relations between entities of any kind. In our case,
nodes of the graph represent PS as well as point like features de-
rived from the optical imagery while edges correspond to their
bilateral relations. More precisely, the set of Persistent Scatterers
is denoted as P and the lattice points derived from the optical im-
age as L, respectively. The set of edges are denoted as E. Every
edge has a real valued number µ which attributes every relation
with a score which, in a simplified view, can be seen as a mea-
sure how well the nodes adjacent to this edge could be matched.
The derivation and importance of the weights µ is described in
Section 4. The bipartite graph structure at hand can compactly be
written as the tuple

G = ({P,L}, E, µ) . (2)

Note that P and L are disjoint and that E is restricted to edges
between P and L. Figure 3 shows an exemplary bipartite graph
with 4 nodes in L and 3 in P . The thickness of the edges between
L and P symbolizes the edge weights µ. A bipartite matching
M(G) is a subset of E in such a way that every node in L has
at most one matching partner in P and vice versa. Furthermore,
a matching is called optimal if the solution minimizes or maxi-
mizes a certain function of the edge weights, e.g. maximizing the
sum of edge weights. Such a solution is marked with red lines in
Figure 3. Finding aM(G) which optimizes the sum of selected µ
is a standard problem in graph theory and known as linear sum as-
signment problems or maximum weight matching. The ’Hungar-
ian Algorithm’ solves such problems and was already developed
in the 1950s (Kuhn, 1955). Several improvements in terms of ef-
ficiency were published since then ((Kao et al., 2001) and (Das
and Kapoor, 2014)) and made this algorithm widely applicable
to many fields where assignment problems like allocation of re-
sources are needed. A comprehensive introduction and overview
of the Hungarian Algorithm is given in (Burkard et al., 2009).
For our purposes it is sufficient to summarize the algorithm and
its important characteristics as follows:

Hungarian Algorithm: Suppose a distance matrix D with di-
mension |P | × |L| is given where |P | denotes the number of
PS and |L| the number of lattice nodes derived from the optical
image, respectively. The entries in D are positive and real val-
ued. The Hungarian Algorithm returns those matrix elements in

D which maximize the sum of selected elements (optimality) un-
der the constraint that as many as possible entries are selected
preserving a bipartite matching (maximality).

The entries in D can be seen as the µ weights in the tuple rep-
resentation (2) of the graph. For the remainder of this paper
the graph structure and the matrix representation are used inter-
changeably. Preserving a bipartite matching can be seen as the
constraint that every column and row is allowed to contain at
most one selected entry. In general the amount of PS is lower
than the number of lattice nodes derived from optical imagery. In
such cases only |P | lattice nodes in L get matched to a PS. In the
following section we derive an iterative procedure which applies
the Hungarian Algorithm given a distance matrix D under some
topology constraints for P , namely incorporating the PS group-
ing result.

4 METHOD

As outlined in Section 2 the direct projection of PS into oblique
imagery is error-prone due to the inaccurate elevation coordinates
of the PS. Another source of uncertainty is the orientation of
the optical camera. In order to make the matching more robust
against such uncertainties, we exploit the regular structure of the
facades under investigation. The key idea is to condense this prior
knowledge about the regularity and the fact that the neighboring
properties, i.e. the topology of facade objects, are preserved in
both imaging geometries. The implementation of these consider-
ations is done by minimizing a distance matrix consisting of two
terms: First, a geometrical distance in image coordinates between
matched PS and optical lattice nodes has to be small. This term is
denoted byDgeom. Second, the topology of the PS should be pre-
served when projected into the optical image. The term capturing
this property is denoted by Dtopo. Both terms can be adjusted in
terms of how much they contribute to the overall solution. This
leads to the joined distance matrix

D = αDgeom + (1− α)Dtopo . (3)

The weighting parameter α controls the contribution of each term
and is defined between 0 and 1. A value of α = 1 degenerates the
solution to a simple geometrical problem while α = 0 means to-
tally neglecting the geometrical information and only considering
the topology. How both terms are derived and a short discussion
of them are given in the following two sections.

4.1 Geometrical information

The first term in equation (3) captures the geometrical consis-
tency of a matching. The highly anisotropic error budget of three-
dimensional PS coordinates due to the large error in elevation di-
rection has to be taken into account. Matching is established in
the image coordinate system which requires projecting the PS.
The covariance matrix of the PS in image coordinates C can be
derived by error propagation from object coordinates and a-priori
information about the orientation parameters. Dgeom is a matrix
with one column for every PS and one row for every lattice node.
The elements are the Mahalanobis distances between every PS
and image lattice node:

Dgeom(i, j) =

√
(Li − Pj)

> C (Li − Pj) , (4)

where Li denotes the ith lattice node and Pj the jth PS projected
into the image.



4.2 Topology information

Analogously to the lattice representation of grouped PS follow-
ing Equation (1), the regular structure of facade buildings present
in optical images can also be described by two spanning vectors
(or spacings in the case of rectified images). For a better separa-
tion between a lattice grouped in the optical image and a product
of the PS-grouping we denote the lattice coordinates for the first
one with a and b, while for the latter u and v are used. Then,
a single node of this regularity can be represented as its two in-
teger repetition u, v of these spacings. Projecting all PS into
the optical image and matching them one-to-one to optical lat-
tice nodes yields the following information: Every PS now has
an index (a, b) as well as an index (u, v) of the matched lattice
node. Figure 4 shows a simple example of such an intermediate
matching result. The regular lattice nodes derived from the op-
tical image are marked with black points while the projected PS
are depicted as red crosses. Their (a, b) indices are written in red
directly next to the PS while the (u, v) coordinates are given via
the axes. The grouping result of the PS in the SAR domain is
shown as red solid lines. A matching between them and the op-
tical lattice is symbolized as blue dashed lines. The topology is
consistent except for the two PS (a = 2, b = 1, u = 6, v = 10)
and (a = 2, b = 2, u = 6, v = 9). Modifying the matching for
these two PS would harmonize the topology but increase the geo-
metrical distance of the matching. Comparing this example with
the problem statement in Section 4, Figure 4 can be interpreted as
follows: In terms of the tradeoff between geometrical and topo-
logical consistency the sum of the length of the blue dashed lines
are a measure of the geometrical quality while the topological
consistency is captured by comparing the indices.

Analogously to the geometrical measure, Dtopo is a matrix with
one column for every PS and one row for every lattice node. The
elements are computed as

Dtopo(i, j) =

{
0, if Pj(a) = Li(u) ∧ Pj(b) = Li(v)

1, otherwise
. (5)

This means that Dtopo has zero entries wherever the topology of
the matched lattice nodes is consistent with the topology of the
corresponding PS in the SAR geometry and 1 otherwise. This
model is rather simple but captures well the prior knowledge
about the topology and empirically leads to satisfactory results.
An important consideration is neglected in the described exam-
ple and Figure 4: The offset between the (a, b) and (u, v) indices
has to be considered. This is done by performing a majority vot-
ing scheme over the differences a − u and b − v, respectively,
assuming that the projection of the majority of PS into the optical
image is correct in terms of topology. This assumption was met
in all empirical investigations done so far.

The mutual dependence ofDtopo andDgeom via an iterative pro-
cedure is an important element of the overall approach and the
key element for the derived Iterative Bipartite Matching algo-
rithm.

4.3 Iterative Bipartite Matching

Given a set of Persistent Scatterers originating from a single fa-
cade and an optical oblique image from the same building face,
we aim at finding two things: First, a matching M between the
PS and features derived from the optical image as well as their
actual position L in the image. Since we exploit the regular align-
ment of window elements, all matching partners in the image can
be described as the set of nodes defined by a lattice as given in
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Figure 4: Example of an intermediate matching result. Black dots
mark lattice nodes which were derived from the rectified optical
oblique image. They can be described by their (u, v) indices.
Red crosses symbolize PS projected into the optical image. Their
indices (a, b) which are the result of the grouping procedure in
the SAR domain are given in red. The matching result of this
iteration is shown as blue dashed lines. A contradiction is present
in the lower middle part.
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Figure 5: Flow chart of the iterative bipartite matching procedure.
The PS in image coordinates as well as the topological informa-
tion Dtopo are given and constant during all iterations. The dis-
tance matrix D is composed of the geometrical and topological
distance matrices. D is subject to a standard bipartite matching
approach which leads to changed image coordinates of the lattice
nodes.



Equation (1). The spacings in horizontal and vertical direction
in the rectified image are not part of the optimization procedure
and thus, the position is unambiguously determined by the lattice
offset L0. A matching M(D) can be found for a given distance
matrix D which is built according to Equation (3). These consid-
erations can be put into an analytical form and let us formulate
the following minimization problem:

argmin
M,L0

M(D)∑
m

√
(Lm − Pm)>C (Lm − Pm)

w.r.t. D = αDgeom(L0) + (1− α)Dtopo ,

(6)

where m is the index over all matched pairs of PS and corre-
sponding lattice nodes. An important observation concerning the
solution of the above problem is that both parameters to optimize
are mutually dependent: Changing the lattice shiftL0 may lead to
a different matching M and vice versa. In order to cope with this
mutual dependency, we derive an iterative approach of which the
main idea is inspired by the expectation maximization algorithm
(Dempster et al., 1977): Fixing the matching and optimizing the
shift followed by an updated matching iteratively converges un-
der certain criteria which are stated below.

A flowchart of the optimization scheme is given in Figure 5. The
position of the PS in the image as well as the topology are con-
stant. The iterative procedure starts with calculating the geomet-
rical distance between all PS and image lattices considering the
anisotropic error metric. Prior knowledge about the topology in
SAR geometry is introduced into this matrix by considering the
weighted distance matrix D following Equation (3). Perform-
ing a standard bipartite matching results in a matching M(D).
Based on this matching the shift T is computed which minimizes
the sum of distances of all matched pairs. With these new lat-
tice positions, the distance matrix of the next iteration is created
and the whole procedure is repeated until the solution converges.
Algorithm 1 states the described procedure in four steps and is
the basis for the following description, which explains why the
presented approach is optimal and guarantees convergence.

Data: Image coordinates of PS; topology matrix Dtopo

Result: Assignment M of PS to lattice nodes; image
coordinates of lattice origin L0

Step 0:
Initialize lattice origin L0

Initialize shift T = (0, 0)
while solution has not converged do

Step 1:
Apply shift: L0 ← L0 + T
Step 2:
D ← αDgeom(L0) + (1− α)Dtopo

Step 3:
M ← Hungarian algorithm(D)
Step 4:
T ← average shift(M)

end
Algorithm 1: Iterative Bipartite Matching

The proof of optimality and convergence is based on two basic
theorems. The first simply states that step 1 minimizes the current
solution for a given matching M(D). Note that the averaging
itself is done in step 4 but directly followed by step 1 in the next
iteration.

Theorem 1 (Optimal shift). Given a bipartite matching with |M |
matched pairs in a Mahalanobis distance metric, averaging the
shift between matched nodes minimizes the sum of the Maha-
lanobis distances over all matches in M .

Proof. The sum of |M |Mahalanobis distances is

f :

|M|∑
m=1

√
(dm − t)TC(dm − t) , (7)

where dm are the distances between matched pairs and t is the
global shift. The shift which minimizes f can be found by finding
the minimum of the derivative of f with respect to t. Since the
square root increases strictly monotonically it can be ignored for
finding the minimum. Thus,

∂f

∂t
:

|M|∑
m=1

Cdm

|M|∑
m=1

C

=
1

|M |

|M|∑
m=1

dm. (8)

Step 2 updates the distance matrix D. It is important to note, that
Dtopo as well asα are constant throughout all iterations and, thus,
D only depends onDgeom. The Hungarian Algorithm always re-
turns the optimal solution for a given distance matrix. Therefore,
changing the elements in Dgeom in the way as described above
leads to Theorem 2.

Theorem 2 (Updated matching). An optimal matching M1 with
matching costs c1 in a bipartite graph G = ({P,L}, E, µ) is
given. If the translation which minimizes the sum of the distances
is applied on one set of the bipartite graph, i.e. L, computing
again an optimal matching will always yield a matchingM2 with
matching costs c2 in a way that c2 ≤ c1.

Proof. Let T be the averaged shift minimizing the sum of Maha-
lanobis distances. Applying this shift to L but holding on to the
matching M1 leads to matching costs which are at most as high
as c1 according to Theorem 1. Performing the optimal match-
ing on the shifted nodes will always yield smaller or equally high
matching costs as c1 since otherwise the matching would not be
optimal.

Thus, every iteration leads to matching costs smaller than the pre-
vious iteration. The algorithm always converges since the match-
ing costs decrease or stay constant from iteration to iteration.
A configuration where the algorithm jumps between two equal
states is conceivable but did not occur during our empirical in-
vestigations. The parameter α plays an important role in terms of
balancing the two mutually dependent impacts for the overall so-
lution. The geometry and the topology information favour differ-
ent matchings. Neglecting the topology information altogether,
i.e. α = 1, leads to a bipartite matching which minimizes the
geometrical distance between the lattice points and the PS pro-
jected in the image and can be interpreted as an ’Iterative closest
point’-like procedure. On the other hand, neglecting the geom-
etry information and just considering the topology information,
i.e. α = 0, leads to a solution in total accordance with the topol-
ogy derived from the SAR grouping step. In summary, either
the influence of projection errors due to a defective outer orienta-
tion, for instance, is dominant in the geometry-only solution, or
the position of the lattice in the image has no influence at all in
the topology-only solution. This, and other important aspects of
the presented method are empirically shown in the following two
case studies.



Figure 6: Overview of the facade ’Lindenstraße’. Red crosses:
Persistent Scatterers projected into the image. Cyan circles: Final
lattice nodes after convergence. Green lines: matching vectors
between PS and corresponding lattice nodes. Two areas marked
with red rectangles are used for further investigations.

5 CASE STUDIES

Two case studies are presented to show the applicability of the
presented method and to discuss some characteristics of the algo-
rithm. We use the following data captured from the city center of
Berlin, Germany.

• A Persistent Scatterer point cloud derived from 54 TerraSAR-
X High Resolution Spotlight acquisitions with an incidence
angle of 39◦. The spatial resolution in range and azimuth
direction is approximately 60 cm.

• The imagery consists of several 45◦-obliques captured dur-
ing two campaigns in 2006 and 2010. The ground sampling
distance in the scene center lies in between 10 cm to 15 cm.

5.1 Case study Lindenstraße

The influence of the parameter α is discussed with the aid of this
case study. The facade under investigation belongs to a seven
storey building in the city centre of Berlin. An overview includ-
ing a matching result for α = 0.5 is given in Figure 6. The
PS projected into the oblique image are marked with red crosses.
The matching to the lattice nodes (cyan circles) are given as green
lines. Two issues are noticeable: First, the overall consistency
between PS positions and lattice nodes seems to be meaningful.
The optimization procedure yielded the lower left corner as the
optimal matching partner for the PS. Second, the directions of
the matching vectors (green lines) are not randomly distributed
but are very similar which coincides with the projection of the
elevation direction into the image.

The algorithm is run for the same facade but varying values of α.
Figure 7 shows the geometry and topology scores as well as the
final position of the lattice nodes as a function of α. The geom-
etry score in Figure 7a is simply the summed length of matching
vectors for the final solution in pixels, while the topology is eval-
uated by measuring the sum of distances of matches with non-
consistent topology. Setting α = 0 leads to a solution which is
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Figure 7: Dependence of geometry and topology scores (a) as
well as the X and Y coordinates (b) of the final lattice nodes on
parameter α



Figure 8: Different positions of lattice points as a function of the
parameter α. Background: cut out grayvalue image of the facade.
The original PS positions are marked as red crosses. The resulting
lattice node positions which are dependent on the parameter α are
marked as colored circles.

solely governed by the topology. Thus, the corresponding score
is 0 while the geometry penalty is at its maximum. Increasing α
means putting more emphasis on the geometry, lowers the cor-
responding score but consequently increases the topology score.
This behaviour can be recognized until a value of α = 0.3. Strik-
ingly, higher values do not change the scores any further. The
dependence of X and Y coordinates from α shows a similar be-
haviour. Figure 7b shows the change of the centroid of all lattice
nodes dependent on α. Since one of our two aims is to find the
most likely image coordinates of the matching partners for all PS,
it is worthwhile noticing that the algorithm is stable with respect
to α. Only four different states can be identified if all differences
below one pixel per coordinate are assumed to represent equal
results.

An important question is how these four configurations differ
from each other in terms of the matching and the positions of
the matched lattice nodes in the image. Based on the previous
findings, Figure 8 shows the final results for four different α val-
ues. The depicted scene is a cut out from Figure 6, marked by the
right red rectangle. For low α values, i.e. α = 0 and α = 0.1,
the lattice nodes tend to be on the right side of the windows. For
α = 0.5 and α = 1 the lattice nodes lie on the lower left corner of
the windows. Considering the SAR sensing geometry and the ori-
entation of the facade with respect to the sensor line of sight, this
left corner is assumed to be the correct side. Since α = 1 means
totally neglecting the topology information, the finding prompts
the question why this sort of information is helpful at all. Figure
9 gives the answer. The depicted scene is a cut out from Figure 6,
marked by the left red rectangle. Relying only on the geometry
information, see Figure 9b, causes the lower right PS (yellow cir-
cle) to get assigned to a lattice node which violates the topology
gained by the PS grouping. Incorporating this information offers
a more realistic result, as shown in Figure 9a.

5.2 Case study Charlottenstrasse

A second case study is presented in Figure 10 in order to show
the robustness of the approach. The positions of the projected
Persistent Scatterers are marked with red crosses while the final
lattice nodes are given as cyan circles. The matching vectors are
depicted in green. Even though the facade is partly covered by
a different building in the optical image and some PS at the up-
per region are induced by objects not being part of the regularity,

(a) α = 0.5 (b) α = 1

Figure 9: Cut out detail of Figure 6. Influence of topology for (a)
α = 0.5 and (b)α = 1. Red lines: grouping result of PS in range-
azimuth geometry, projected into the image. Green lines: Match-
ing vectors between PS and lattice nodes. Cyan lines: topology
of matched lattice nodes. Topology is consistent in (a) but not in
(b).

the matching is meaningful. The lower left window corner coin-
cides with considerations about the SAR sensing geometry and
the facade orientation with respect to the sensor line of sight.

6 CONCLUSION AND OUTLOOK

We derived an iterative graph matching algorithm in order to as-
sign lattice nodes derived from optical oblique imagery to Per-
sistent Scatterers at facades. The presented approach is proved to
converge and to yield the optimal solution in terms of minimizing
the Mahalanobis distance between the projected PS in the image
and the optical lattice nodes.

At the moment, the approach is limited to building faces with
regularly aligned facade elements. We exploit this pattern struc-
ture to establish the connection between point like features from
very different sensors allowing for a better interpretation of the
mechanisms inducing Persistent Scatterers. The matching proce-
dure itself, however, does not rely on any regular alignment of
objects to match. Therefore, an extension to more general fa-
cades is part of upcoming research. Furthermore, it is planned to
enlarge the extension from single facades to investigation areas
of some square kilometers in extent and to apply the approach to
change detection tasks. Further work will also investigate more
complex approaches for the binary model (5) capturing the topol-
ogy information. One possibility is to weight the entries ofDtopo

dependent on how much the indices differ from each other.
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