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ABSTRACT: Recently, much more high-resolution satellite images became available. We can detect vehicles in such 

high-resolution images, and estimation of earnings by counting vehicles in commercial facilities is becoming popular. 

For this purpose, we need to detect and count vehicles in satellite images accurately. In applications for detecting 

vehicles, deep neural network has achieved state-of-the-art performance like in general image classification and 

object detection. To evaluate the accuracy, we tested two methods: Simplified HDNN (SHDNN), which generates 

sliding windows and classifies them by CNN, and BING-based CNN (BING-CNN), which extract region proposals 

by BING and classifies them by CNN. In our experiment, while the SHDNN has achieved better performance than 

the BING-CNN, the BING-CNN was much faster than the SDHNN. And we found some issues to work on for 

improving the accuracy of them. 

 

1. INTRODUCTION 

 

Number of vehicles is an important indicator to estimate industrial and commercial outcomes, such production and 

amount of sales, for sustainable strategy and planning of socioeconomy. High-resolution satellite images are useful 

resources to count vehicles as the techniques of vehicle detection using the images has been demonstrated by several 

studies. Conventional algorithms like SIFT and HOG need manual selection of features while automated feature 

selection algorithms by deep learning achieve state-of-the-art performance in many applications. 

 

In applications for detecting vehicles, Chen et al. demonstrated Hybrid Deep Convolutional Neural Networks 

(HDNN), a method using sliding windows in a gradient image and classification by HDNN, which is the enhanced 

architecture of Convolutional Neural Networks (CNN) (Chen et al.,2014). Qu et al. applied Binarized Normed 

Gradients (BING; Cheng et al., 2014) to extraction of region proposals, which are clusters of pixels likely to be 

individual objects, for vehicle detection in high-resolution satellite images (Qu et al., 2016). Sliding windows usually 

achieves rather better performance than region proposals while sliding windows is more time-consuming than region 

proposals. In this paper, we present a performance comparison of the Simplified HDNN (SHDNN) and the BING-

based CNN (BING-CNN) through experiments in different conditions by landscape and spatial resolution. 
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2. METHODS AND ALGORITHMS 

 

2.1 Methods 

We tested two methods. The one is the SHDNN, the other is the BING-CNN. The SHDNN is based on the 

HDNN(Chen et al.,2014) and the BING-CNN is based on the combination of BING(Cheng et al., 2014) and CNN 

(Qu et al., 2016). In the original paper of Chen et al., they used enhanced architecture of CNN, named HDNN. In this 

experiments, we applied the same simple architecture of CNN to these two methods for fair comparisons. 

Implementation detail is explained in the chapter three. 

 

SHDNN: First we calculated gradient images from an input image, and generated sliding windows to cover each 

whole image. Next we moved each window to its intensity centroid so that the windows covered vehicles better. Then 

we discarded the repetitive windows, and classified remained windows by the CNN. 

  

BING-CNN: First we extracted region proposals by BING. Then we classified the region proposals by the CNN. 

  

2.2 Algorithms 

 

Convolutional Neural Network(CNN): CNN is architecture of deep learning and it achieves state-of-the-art 

performance in many kinds of applications like image classification and object detection. CNN generally has 

convolutional (conv) layers, pooling(pool) layers, and fully connected(fc) layers. A conv layer has filters, and we 

calculate inner product of a filter and a receptive field in an image. Sliding the receptive field, a map is computed. At 

a pool layer, the map size is reduced. After going through some conv layers and pool layers, finally a fc layer output 

a result. Training CNN, filters of conv layers learn features of images. Pool layers enhance the robustness of CNN 

against shift variance and noise. Conv layers and pool layers work as a feature extractor, and fc layers work as a 

classifier. 

 

BING(Binarized Normed Gradients for Objectness): BING extract region proposals from an image by objectness. 

Objectness means likelihood of being objects. Fig. 1 shows an example of BING. BING calculates objectness based 

on the assumption that all objects that are resized to same size have correlated features in a gradient image that an 

object is enclosed by edge. BING learns features of objects as a fixed-sized filter (eight by eight = 64 dimensions in 

the original paper), generates a feature map resizing original image to different quantized sizes and calculating the 

normed gradients of each resized images, and extracts region proposals scanning the map with the filter. BING also 

uses binary approximation for calculating features, and thus it can calculate features by bit operation. Therefore, 

BING can extract region proposals very fast. 

 

 



 

 

  
      (a) input image                (b) gradient features of bounding boxes 

                                      which are resized to 8 x 8 pixels 

 

  

 

 

 

 

   

      (c) gradient map                  (d) learned filter(8 x 8 pixels) 

Figure 1. An example of BING 

 

3. IMPLEMENTATION DETAIL 

 

3.1 CNN architecture 

 

As Fig. 2 shows, our CNN has seven layers: conv1, pool1, conv2, pool2, conv3, pool3, fc. The input image shape is 

48 by 48 pixels with three channels. Conv1 has 20 filters whose size is seven. Conv2 and conv3 have 8 filters whose 

size is four. All pool layers’ size and stride are two. Fc layer has two outputs. The CNN was trained with ground truth 

vehicle images as positive samples and random sampled background images as negative samples from train images. 

A random sampled image was judged as a negative sample when IoU(intersect over union) of a ground truth and it 

was under 0.4. 

 

 

                    Figure 2. Our CNN architecture 



 

 

3.2 SHDNN 

 

First we computed three gradient images from an original input image and two thresholding images. In the 

thresholding images, the one’s pixel values over 60 were set to 60, and the other’s pixel values under 100 were set to 

100. Next we generated sliding windows for each gradient image to cover each whole image. Sliding step was half 

of window size. Then we moved each window to its intensity centroid, enlarged the windows 1.414 times and moved 

each window to its intensity centroid again. Finally, we collected all windows, filtered the repetitive windows by 0.15 

times of window size, and classified the remained windows by the CNN. We used these parameters from the original 

paper. 

 

3.3 BING-CNN 

 

First we trained BING using ground truth vehicle images from train images. Then we extracted region proposals by 

BING from an input image, and classified the region proposals by the CNN. 

 

4. EXPERIMENT 

 

4.1 Train and Test images 

 

Fig. 3 shows our train and test images. We prepared two images of shopping malls and two images of a harbor in 

Japan from bing map, and two images of shopping malls and two images of a harbor in New York from USGS. Bing 

map images resolution is one meter and USGS images resolution is zero point five meters. And we split these in half 

and used the one as training images and the other as test images. We made ground truth data by visual interpretation. 

The ground truth window size in one-meter resolution images is 25 pixels and the 0.5-meter resolution images is 50 

pixels. 

 

              

(a)shopping mall         (b)harbor              (c)harbor             (d)shopping mall 

               
 (e)shopping mall         (f)harbor              (g)harbor             (h)shopping mall 

Figure 3. (a)-(d) are train images and (e)-(h) are test images. (a), (b), (e) and (f) are one-meter resolution images in 

Japan and (c), (d), (g) and (h) are 0.5-meter resolution images in New York. 

 



 

 

4.2 Training the CNN 

 

We used 3324 of ground truth vehicle images as positive samples 

and 116340 of random sampled background images as negative 

samples. We used SGD as optimizer and a batch size of 100. We 

trained the CNN for 3000 epochs and it took about 10 hours using 

GPU. Fig. 4 shows the convergence of accuracy. 

 

Figure 4. Convergence of accuracy 

4.3 Training BING                                            

 

We used 3324 of ground truth vehicle images as positive samples. It took about 22 seconds for training. 

 

4.3 Definition of quantitative measures 

 

In region proposals by BING, detection rate(DR) are defined as follows: 

 

DR =  
number of covered vehicles

number of vehicles
 × 100%                                                       (1) 

 

A vehicle is covered if IoU of its bounding box and a region proposal is over 0.3.  

 

In test results, precision rate (PR) and recall rate (RR) are defined as follows: 

 

PR =  
number of detected vehicles

number of detected objects
 × 100%                                                       (2) 

 

RR =  
number of detected vehicles

number of vehicles
 × 100%                                                       (3) 

 

In SHDNN, a window is exact only if the distance between the window center and a vehicle center is less than 0.45 

times of the window size. In BING-CNN, a window is exact only if IoU of the window and a ground truth bounding 

box is larger than 0.3. A vehicle is exactly located if it has at least one exact window.  

 

4.4 Test by the SHDNN 

 

Fig. 5 and Table 1 show the results. Mean execution time was about four minutes. In Fig. 5 (a), only about ten percent 

of vehicles were detected correctly. Especially on the roof few vehicles were detected. It might have been caused by 

difference of color between train images and the test image. In Fig. 5 (b), 70 percent of vehicles are detected. In Fig. 

5 (c), about 80 percent of vehicles are detected. In Fig. 5 (d), there are many false alarms while about 80 percent of 

vehicles are detected. Many areas of which edge features are similar to ones of vehicles seem to have been 



 

 

misclassified. As a whole, RRs in 0.5-meter resolution images tend to be higher than ones in one-meter resolution 

images. 

 

   

                (a)                                      (b) 

   

                (c)                                      (d) 

Figure 5. Results of the SHDNN. Red rectangles indicate true positives and blue ones indicate false positives. 

 

              Table 1. Results of the SHDNN 

Test 

image 

exec time 

(sec) 

PR(%) RR(%) ground truth 

vehicles 

detected 

vehicles 

detected 

objects 

(a) 111.214 75.93 12.31 820 101 133 

(b) 331.691 92.58 69.42 4226 2934 3169 

(c) 283.637 94.52 79.28 806 639 676 

(d) 200.022 41.43 81.56 510 416 1004 

 

 

 



 

 

4.5 Test by the BING-CNN 

 

Fig.6 shows the region proposals by BING, and Fig. 7 and Table 2 show the results. We extracted 10,000 region 

proposals in each image by BING. It took less one second for each image. And we classified region proposals by the 

CNN. Mean execution time was about six seconds. In Fig.6 (a) and (b), DRs were lower than in Fig.6 (c) and (d). In 

Fig.7 (a), the result is similar to the one of the SHDNN while there are more false alarms. And in Fig.7 (b), many 

windows were judged as false positives while they covered vehicles because of low IoU. These seems to have been 

caused by the mismatch between window sizes of region proposals which is fixed by parameter of BING and the 

image resolution. In Fig.7 (c), while about 80 percent of vehicles were detected there are more false alarms than the 

result of the SHDNN. In Fig.7 (d), while 70 percent of vehicles were detected there are many false alarms like the 

result of the SHDNN. 

 

    

                  (a)                                          (b) 

  

(c)                                        (d) 

Figure 6. Green rectangles indicate region proposals by BING. 



 

 

  

                  (a)                                          (b) 

  

(c)                                        (d) 

Figure 7. Results of the BING-CNN 

 

Table 2. Results of the BING-CNN 

Test 

image 

prediction 

time(sec) 

DR(%) PR(%) RR(%) ground truth 

vehicles 

detected 

vehicles 

detected 

objects 

(a) 3.628 79.26 48.02 10.36 820 85 177 

(b) 12.369 70.18 99.22 39.44 4226 1667 1680 

(c) 4.076 100 62.11 83.99 806 677 1090 

(d) 3.334 99.21 49.24 70.39 510 359 729 

 

5. CONCLUSION 

 

In this experiment, while the SHDNN achieved better performance than the BING-CNN, the BING-CNN was much 

faster than the SHDNN. And there are some problems: The results of the image whose color is different from training 



 

 

images were bad. Areas which has similar edge features to vehicles were misclassified. Quantized window sizes of 

BING seem not to fit the one-meter resolution images. Solutions of them are follows: We need to use more training 

data which has different features. We need to use more sophisticated architecture of CNN which has better capability 

of classification. We need to optimize the parameter of BING. And to improve the performance of BING-CNN more, 

we need to train CNN with training data which consists of region proposals by BING. 

 

We tested two methods and evaluated the performance, and it turned out the performance will be improved by solving 

some problems. We will work on that. 
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