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ABSTRACT: Leaf area index (LAI) is an important indicator of vegetation ecosystem health. Poyang Lake 

wetland is the international important wetland and its vegetation LAI is the indicator of wetland ecosystem health. 

In Poyang Lake wetland, vegetation grows densely, and LAI has large dynamic range. Saturation often is appeared 

for LAI estimation using optical remote sensing data. With the development of SAR technique, SAR remote 

sensing data sources are continuously enriched for supporting the various applications. Considering the complex 

scatting mechanisms of SAR data, we defined a radar vegetation index, and proposed a new integrated vegetation 

index based on the fusion of optical and SAR data. The integrated vegetation index was used for estimation of 

wetland vegetation LAI. The validation of measured data and theoretical model simulation showed that this 

integrated vegetation index is a good alternative to which using only the optical or SAR data. The best fitting 

models were generated using optical vegetation indices, radar vegetation index, and the integrated vegetation index, 

respectively. The results indicated that the integrated vegetation index can improve predication accuracy for 

wetland vegetation LAI. 

 

 

1. INTRODUCTION 

 

Leaf area index (LAI) is one of canopy structure parameters of vegetation. LAI of wetland vegetation is an 

important indicator to measure the primary productivity and ecosystem health of wetland, and control the biological 

and physical processes of wetland vegetation (Bonan, 1995). Traditional ground measurement can obtain LAI 

values from specific surface, but it is difficult to monitor a wide range of LAI. Remote sensing technology, which 

has the advantages of large coverage area and high efficiency, provides an effective way for LAI monitoring in 

regional and global vegetation (Meng et al., 2007).  At present, optical remote sensing is main method of LAI 

remote sensing retrieval, and LAI is estimated by establishing the empirical relationship between LAI and 

vegetation index (VI), and VI is calculated by surface reflectance from remote sensing measurement (Liu et al., 

2013). The results show that the LAI is higher, and the VI from the optical data is not sensitive to LAI, so the LAI 

is not able to be accurately estimated (Haboudance et al., 2004; Tang et al., 2007; Zhao et al., 2013). Synthetic 

Aperture Radar (SAR), which has the advantages of all-weather, day and night imaging capabilities, and its ability 

to penetrate the dense vegetation canopy, has great potential in the retrieval and monitoring of vegetation 

parameters (Yu et al., 2012; Gao et al., 2013; McNairm et al., 2014; Zhang et al., 2014). For LAI inversion, SAR 

has more interference factors than optical remote sensing. These factors include the system parameters, the 

vegetation structure, density and water content, and the soil moisture from the surface, so the mechanism of the 

interaction between electromagnetic wave and vegetation is more complex (Wang and Liao, 2010). Therefore, it is 

very useful to retrieve vegetation LAI with the combination of optical and SAR remote sensing. Some studies have 

focused on LAI estimation of forest and crop vegetation by integrating the optical and SAR remote sensing, but the 

LAI retrieval of wetland vegetation is less studied (Clevers and VanLeeuwen, 1996; Manninen et al., 2005; Gao et 



al., 2013).  

In the study, considering the characteristics of dense vegetation coverage and large dynamic range of LAI in 

Poyang Lake wetland, a new method by integrating the optical and SAR data for LAI estimation of wetland 

vegetation is proposed using GF-1 optical data and Radarsat-2 polarimetric data.   

 

2. TEST SITE AND DATA  

2.1 Test Site 

The study site is located in the Poyang Lake Wetland in Jiangxi Province, China. Poyang Lake is an internationally 

important wetland and the largest freshwater lake in China. The climate is characterized as a subtropical, humid 

monsoon climate with a mean annual precipitation of 1620 mm and an average annual temperature of about 17°C. 

The hydrological environment of the Poyang Lake Wetland is very suitable for wetland vegetation. In the dry season 

(November–April), wetland vegetation emerges above water and starts to grow rapidly from early spring, with the 

aboveground biomass reaching the highest level in April. In the wet season (June –September), wetland vegetation is 

flooded and hardly grows except at the lakesides with higher ground level. In November, the water recedes and 

vegetation growth recommences (Liao et al., 2013). The test area in this study is located in central and western 

regions of Poyang Lake, as shown in Figure 1(a). Figure 1(a) is the 4-3-2 band false color composite image of GF-1 

PMS1 data. In figure 1(a), blue line area shows the Radarsat-2 imaging area, the red area is the wetland vegetation 

of Poyang Lake. The predominant vegetation in the Poyang Lake is Carex cinerascens Kükenth , which accounts for 

over 90% of the vegetation coverage, and its real structure is shown in Figure 1(b). 

      

(a)                                                 (b) 

Figure 1 (a) Location of Poyang Lake wetland test site; (b) Real structure of Carex in Poyang Lake wetland 

 

2.2 Remote Sensing Data 

In the study, we used the Level 1A product of multispectral image acquired by GF-1 PMS1 sensor on 10 April 2015, 

with a resolution of 8m. SAR data is SLC product acquired by the Canadian satellite Radarsat-2 with fine 

quad-polarization mode on 4 April 2015. The data, for which the range and azimuth pixel spacings are 4.73m and 

4.96 m, with an incidence angle of 38°.   

The data processing of GF-1 includes radiation, atmospheric and geometric corrections. The GF-1 image is 

classified as vegetation, water and exposed-shoal for masking the LAI inversion. The SAR data processing includes 



radiation calibration, Lee filter, geometric correction and extraction of the radar backscatter coefficient, and the 

Freeman-Durden decomposition is performed to extract three kinds of scattering components (double-bounce, 

volume and surface scatterings) using the Polsarpro software. 

2.3 Field Measurements 

Field measurements concurrent with the remote sensing data acquisition were collected from April3–9, 2015. 

During the field survey, 45 sampling points were collected from 0.5 × 0.5 m quadrants, and each group is averaged 

by 3 random sampling points. The leaf and stem characteristics, soil parameters, weight of grass, and location of the 

sampling point (obtained from GPS records) were recorded. The collected grasses were placed in an oven and dried 

for 12 hours at a constant temperature (100°C), following which the grass moisture was obtained. LAI was 

measured using LAI-2200 canopy analyzer. 

 

3. METHODS 

In the study, we established the correlation between the LAI of Poyang Lake wetland vegetation and the Radarsat-2 

polarimetric and GF-1 data. The correlation is used to select the optimal parameters from optical and SAR data for 

LAI estimation. 

3.1 Optical Vegetation Index 

The Vegetation index composed by red and infrared bands is usually used for LAI estimation due to LAI is 

sensitive to the reflection from the two bands. In the study, three kinds of vegetation indices (Table 1), such as ratio 

vegetation index (RVI), normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) are 

used to analyze the correlation with the measured LAI in Poyang Lake wetland.  

 

Table 1 Definitions of vegetation indices 

Vegetation index Equation 

NDVI Re Re( ) / ( )Nir d Nir dNDVI R R R R    

RVI Re/Nir dRVI R R  

EVI Re Re Re2.5*( ) / (1 6* 7.5* )Nir d Nir d dEVI R R R R R      

 

3.2 Radar Vegetation Index Based on the Freeman-Durden Decomposition 

Radar scattering is divided into volume, double-bounce and surface scattering based on the Freeman-Durden 

decomposition. The total covariance matrix can be expressed as the sum of the covariance matrix of the three 

scattering components(Freeman and Durden, 1998): 

                surfaceSdoubleDvolumeV CPCPCPC 3                                      (1) 

here volumeC
, doubleC

, surfaceC
 are the covariance matrix of volume, double-bounce and surface scattering, 

respectively, and VP , DP , SP are the components of volume, double-bounce and surface scattering, respectively. 

The radar vegetation index based on the Freeman-Durden decomposition is: 
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3.3 Integrated Vegetation Index for Optical and Microwave Fusion 

The optical vegetation index is sensitive to low LAI, and will reach the saturation at the high LAI. Radar has the 

penetration ability, and has the advantage for dense vegetation detection. So the radar backscattering is sensitive to 

LAI, and the saturation appears in higher LAI. The vegetation index for optical and microwave fusion is proposed 

to estimate the LAI:  

Re Re*( ) / ( )Freeman Nir d Nir dMNDVI RVI R R R R                  （3） 

Re* /Freeman Nir dMRVI RVI R R                      （4） 

Re Re Re*2.5*( ) / (1 6* 7.5* )Freeman Nir d Nir d dMEVI RVI R R R R R      （5） 

 

3.4 Integrated Vegetation Index Simulation Based on the Model 

In order to verify the feasibility of the integrated vegetation index, the models were used to simulate the vegetation 

index, and the correlation between LAI and vegetation index was analyzed. PROSAIL model (Li et al., 2009) was 

used to simulate the optical vegetation index, and the microwave canopy scattering model proposed by Karam 

(1982) was used to simulate the radar backscattering for vegetation of Poyang Lake wetland. The microwave 

canopy scattering model was modified to simulate the radar backscattering for vegetation of Poyang Lake wetland, 

and the good results were obtained (Shen et al., 2015). The total backscattering of wetland vegetation includes in 

the volume scatterings of stem and leaf, the double-bounce introduced by the interaction between the leaf, stem, and 

the ground, , and the direct backscatter, and expressed as:  
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here ,i j are H  or V . 

leaf
ij

 and 

stem
ij

 are the volume scatterings from leaf and stem. 

groundleaf
ij

_
and 

groundstem
ij

_
 are the double-bounce scattering introduced by the interaction between the leaf, stem, and the 

ground.  

ground
ij

is the direct scattering from ground.  

In the model, the leaf was modeled as a dielectric elliptical blade, and the stem was simulated with infinite length 

dielectric cylinder model. The integral equation model was used for surface simulation. The Debye−Cole model was 

used to calculate the dielectric constant of the vegetation canopy. The details of the model are referred in references 

(Karam and Fung, 1982; Shen et al., 2015). 

For the Freeman-Durden decomposition, the total scattering power is expressed as Span: 

2 2 2| | 2 | | | |HH HV VV S D VSpan S S S P P P                                     (7) 

and 

28 | |V HVP S                                      (8) 

combined with formula (2), the radar vegetation index can be expressed as: 
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and the radar backscatter coefficient can be defined as follow: 
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here 0A  is he radar radiation area, so the radar vegetation index can be expressed as follow: 
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                             (11) 

It can be simulated with the microwave canopy scattering model. 

 

4. RESULTS AND DISCUSSION 

4.1 Correlation Between the Optical Vegetation Index and LAI 

The correlation between the measured LAI and the vegetation index calculated from GF-1 data is showed in Figure 

2(a), and the figure shows the three vegetation indices have a certain saturation trend with the increase of LAI, 

which was due to the peak growth season of Poyang Lake wetland vegetation. For lower LAI, the vegetation index 

becomes large with the increase of LAI. The correlations between the three kinds of vegetation indices and LAI are 

high, and the correlation coefficient can reach 0.91. When the LAI is more than 3, the vegetation index shows a 

certain saturation trend, and the correlation is poor. For the vegetation of Poyang Lake wetland , the dynamic range 

of LAI is (0, 6). The vegetation index and LAI do not show a good correlation trend due to the phenomenon of 

saturation (see Figure 2(b)). So it is difficult to accurately estimate the LAI only using the GF-1 data. 

     

(a)                                               (b) 

Figure 2 Relationship between the optical vegetation index and LAI 

 

4.2 Correlation Between Radarsat-2 Data and LAI 

The correlation between the measured LAI and the backscattering coefficients of HH, HV, and VV polarization of 

Radarsat-2 data is showed in Figure 3. There is no strong correlation between the three backscattering coefficients 

and LAI due to the complex mechanism of radar to vegetation and the effect of the surface condition. The 

correlation between the backscattering coefficient of HV polarization and LAI is higher than that of HH and VV 

polarizations. This reason is that the HV polarization is correlated with the volume scattering, and the HH and VV 

polarizations reflect the double-bounce and surface scatterings. 



    

(a)                                            (b) 

Figure 3 Relationship between the backscattering coefficient and LAI 

 

Based on the Freeman-Durden decomposition for Radarsat-2 data, the correlation between the three scattering 

components and LAI is analyzed (see Figure 4). The correlation between the volume scattering component and LAI 

is the highest, and reaches 0.54. At lower LAI value, the double-bounce component is dominant in the three 

scattering components. In Poyang Lake wetland, when the vegetation is sparse, the double-bounce scattering is 

dominant because the water content of ground surface is high and the surface is flat. Figure 5 shows the correlation 

between the radar vegetation index and LAI, and the correlation coefficient can reach 0.65, and it is more than the 

correlation between the volume scattering component and LAI. From Figure 4 and 5, when LAI is higher, the 

volume scattering component is dominant in the total scattering power, and double-bounce and surface scattering 

are poor. At low LAI value, the radar scattering is complex, and the dominant double-bounce leads to the decrease 

of the sensitivity of the volume scattering component to LAI. 

  

Figure 4 Relationship between the Freeman-Durden          Figure 5 Relationship between the radar vegetation 

decomposition components of Radarsat-2 data and LAI       index and LAI 

 

4.3 Correlation Between the Integrated Vegetation Index and LAI 

Figure 6 shows the correlation between the integrated vegetation index and LAI, and the correlation is higher than 

that of the optical and radar vegetation indices and LAI. The highest correlation between MNDVI and LAI is 0.71. 

 



    

Figure 6 Relationship between the integrated vegetation      Figure 7 Relationship between the vegetation 

indices and LAI                                         index simulated by PROSAL model and LAI 

                                  

4.4 Simulation and Analysis of the Integrated Vegetation Index Based on the Model 

PROSAL model was used to simulate the optical vegetation index, and the correlation between the optical 

vegetation index and LAI was analyzed as shown in Figure 7. The saturation points of LAI corresponding to the 

three kinds of vegetation indices are from 2 to 3, and increases with the increase of LAI at low LAI value.  

Microwave canopy scattering model was used to simulate the radar vegetation index, and the correlation between 

the radar vegetation index and LAI was analyzed as shown in Figure 8. Combined with the results of the optical and 

radar vegetation indices, the relationship between the integrated vegetation index and LAI can be shown in Figure 9. 

There is very strong positive correlation between the integrated vegetation index and LAI. The integrated 

vegetation index can overcome the saturation from the optical vegetation index at high LAI value, and the radar 

vegetation index is not sensitive to LAI at low LAI value. So the integrated vegetation index can be used for LAI 

estimation in Poyang Lake wetland.  

  

 Figure 8 Relationship between the radar vegetation index    Figure 9 Relationship between the integrated  

simulated by microwave canopy scattering model and LAI    vegetation indices simulated with the model and  

LAI 

 

4.5 Analysis of LAI Estimation  

The estimation models between the different vegetation indices and LAI are shown in Table 2, and the estimation 

results was analyzed using GF-1, Radarsat-2 and measured LAI data. Compared with the estimation results of the 

optical vegetation index, the LAI estimated by the integrated vegetation index is significant , and 2R is more than 



0.65. Compared with the radar vegetation index, the coefficients ( 2R ) of the three kinds of integrated vegetation 

indices are improved, and RSME of MNDVI is smaller, indicated that the integrated vegetation index has the 

advantage of combined with the optical and radar data, and improves the saturation of the optical vegetation index, 

and increase the sensitivity of the radar vegetation index at low LAI value, so it is more suitable for LAI estimation 

in Poyang Lake wetland. Considering 2R  and RSME, the model of LAI estimation from the integrated vegetation 

index (MNDVI) is the best, so it was used for LAI estimation in the study area.  

Table 2 The estimation models between different vegetation indices and LAI 

Vegetation 

index 
Estimation model 2R  RMSE 

MNDVI 
1.2986.98*y x  0.711 0.889 

MRVI 1.121 1.247y x   0.651 0.964 

MEVI 
22.978 6.419 1.498y x x     0.682 0.967 

NDVI 
1.45.98*y x  0.289 1.022 

RVI 1.328 0.045y x   0.124 1.183 

EVI 2.933 1.947y x   0.231 1.116 

FreemanRVI  
1.1461.43* xy e  0.635 0.914 

 

5 CONCULSIONS 

In the study, based on the correlation between the LAI and vegetation index, we proposed the integrated vegetation 

index, which makes full use of the high sensitivity of the optical data at low LAI value and radar penetration for 

dense vegetation canopy.  The integrated vegetation index was constructed by the optical vegetation multiplying 

the radar vegetation index, and the better correlation between the integrated vegetation index and LAI was verified 

by the analysis of the measured data and the model simulation. For the three kinds of integrated vegetation indices, 

the coefficients ( 2R ) of the estimation model are more than 0.65, and the estimation model from MNDVI is the 

best.  

The method of LAI estimation using the integrated vegetation is simple and easy to use. In future work, the 

integrated vegetation index will be improved to estimate the LAI of different type vegetation. 
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