SEASONAL CHANGING TREND OF CO₂ CONCENTRATION RESPONSING TO CARBON ABSORPTION OF VEGETAION OBSERVED BY SATELLITES

Liping Lei¹, Zhonghua He^{1,2}, Nian Bie^{1,2}, Shaoyuan Yang^{1,2} and Zhaocheng Zeng^{1,3}

¹Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of

Sciences, Beijing 100094, China,

Email:leilp@radi.ac.cn,

²University of Chinese Academy of Sciences, Beijing 100049, China,

Email: hezh@radi.ac.cn, bienian@radi.ac.cn, yangsy@radi.a.cn

³Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China, Email: zczeng@cuhk.edu.hk

KEY WORDS: GOSAT, global CO₂, vegetation carbon absorption

ABSTRACT:

It is not exactly known how the seasonal variations of CO_2 concentration such as its seasonal peak and amplitude etc., are influenced by vegetation carbon absorption. This paper presents the seasonal changing trend of CO_2 concentration affected by the seasonal activity of vegetation carbon absorption observed by Greenhouse Gases Observing Satellite (GOSAT). We extracted the seasonal changing characteristic values of CO_2 concentration using the global mapping of column-averaged CO_2 dry-air mole fraction (XCO₂) retrievals from GOSAT observing data during June 2009 to May 2014. The seasonal changing characteristic values of CO_2 concentration mainly include the amplitudes, the peak and its time of XCO₂ seasonal variations. As a result, it is found that the amplitude of XCO₂ seasonal variation is spatially corresponding to that of the normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) which could indicate the magnitude of vegetation carbon absorption. Additionally the seasonal variation of XCO₂ is strongly correlated with the seasonal variation of NDVI over vegetation covers in the northern hemisphere.

1. INTRODUCITION

Satellite observation of atmospheric CO_2 such as Greenhouse Gases Observing Satellite (GOSAT) and Obit Carbon Observation (OCO-2) offers us new opportunities to know the mechanism of land biosphere absorption for CO_2 as its advantage of global coverage and high measurement density comparing to in-site measurements (Buchwitz et al, 2015, Hungershoefer et al., 2010, Crisp et al., 2004; Yokota et al., 2004). The patterns of XCO_2 distribution averaged over a long period of several years are mostly affected by distribution of the underlying surface fluxes (Schneising et al., 2011). It is not completely clear what is the spatial differences of seasonal variation of CO_2 concentration in a global scale although we know that the seasonal cycle of CO_2 is mainly induced by the seasonal activities of biosphere absorption for CO_2 [Zeng et al., 2014; Schimel at al., 2015].

In this paper we applied the global XCO_2 mapped from GOSAT XCO_2 data to extract the seasonal changing characteristics of XCO_2 and analyze these characteristics related with the vegetation absorptive strength using NDVI data.

2. USED DATA AND PROCESSING

2.1 Raw XCO₂ data

We collected the raw XCO₂ data (ACOS-GOSAT v3.3, http://co2web.jpl.nasa.gov) produced by the Atmospheric CO₂ Observations from Space (ACOS) project from applying the Orbiting Carbon Observatory (OCO) calibration, validation, and remote sensing retrieval algorithm to the GOSAT spectral measurements spanning from June 2009 through May 2013 (O'Dell et al., 2012; Wunch et al., 2011). We extracted those land-only data with high gain flag from those raw ACOS-GOSAT v3.3 XCO₂ retrievals. The data is first filtered using the advanced screening criteria to extract the good soundings, and then bias-corrected to remove the systematic bias in the XCO₂ retrievals, as recommended by ACOS data users' guide (Wunch et al., 2011, Crisp et al., 2012). The filtered and bias-corrected data are referred to as ACOS-XCO₂ hereafter. It is reported that the bias-corrected data is uncertain to ~0.3 ppm when compared with data from Total Carbon Column Observing Network (TCCON) (ACOS User Guide, 2014), and ACOS datasets show more stable performance comparing with the other several individual satellite retrieval

algorithms (Buchwitz et al., 2015). Additionally we collected the simulation XCO₂ data by Carbon-Tracker model from June 2009 to May 2014 for comparing with ACOS-XCO₂ (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker).

2.2 Mapping XCO₂ data from ACOS-GOSAT retrievals

 XCO_2 data from ACOS-GOSAT retrievals are irregularly distributed and have many gaps in space and time mainly due to cloud coverage and the observation mode of GOSAT-FTS (Zeng et al., 2014), which make it difficult to directly interpret the detailed spatio-temporal variations of CO_2 concentration. The mapping method to fill the gaps between ACOS-GOSAT XCO₂ data is therefore applied to the ACOS- XCO₂ data. The method is based on the spatio-temporal geo-statistical estimation approach, which first quantify and model the spatio-temporal correlation structure in the data and then make optimal estimations of XCO₂ in the gaps using spatio-temporal kriging (Zeng et al., 2014). The mapping method and the resulted mapping XCO₂ data, which are used in this study, are described and assessed in Zeng et al. (2013) and Guo et al. (2015). Using the mapping method, we obtained the mapped ACOS-XCO₂ dataset and the corresponding estimation standard deviation, a measurement of estimation uncertainty, in 1°×1° grids in space and 3 days interval in time from June 2009 to May 2014.

2.3 NDVI data

The data of the normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) is collected as well in the same period as XCO_2 dataset released from USGS (http://e4ftl01.cr.usgs.gov). All of these data is resampled in $1^{\circ}\times1^{\circ}$ grids matching with the grid size of XCO_2 data.

2.4 Fitting of XCO₂ seasonal cycle

The temporal variation of CO_2 concentration could be divided into two parts for annual growth and seasonal cycle mainly affected by the anthropogenic fossil fuel emissions and biosphere activities. The classical formula, a skewed sine wave, can be used to fit the temporal variation of CO_2 concentration [Vettr et al., 2015; Lindqvist et al., 2015]. We fitted an monthly seasonal cycle to the mapping XCO₂ and daily Carbon-Tracker simulating data using the harmonic functions [Lindqvist et al., 2015].

3. RESULTS AN D DISCUSSION

The amplitude of XCO_2 seasonal variation, which is the difference between the maximum and the minimum XCO_2 , is extracted using fitting XCO_2 seasonal cycle from the temporal variation of mapping $ACOS-XCO_2$ data, and is shown in Figure 1. Similarly Figure 2 demonstrates the amplitude of XCO_2 seasonal variation using fitting XCO_2 seasonal cycle from the temporal variation of simulated XCO_2 data by Carbon-Tracker.

Figure 1. The amplitude of XCO_2 seasonal variation from fitting seasonal cycle of mapping XCO_2 derived from GOSAT ACOS v3.5 data from June 1 2009 to May 30 2014 with 3 day time resolution.

We can find from Figure 1 that the amplitude of XCO_2 seasonal variation observed by GOSAT clearly changes with the latitudinal band and responding to the border of high latitudinal forest in the northern hemisphere. Comparing with the amplitude of XCO_2 seasonal variation from simulated XCO_2 by Carbon-Tracker 2015 as shown in Figure 2, they demonstrated very similar spatial distribution whereas that of ACOS- XCO_2 presented slightly higher value than that of simulating XCO_2 .

Figure 2. The amplitude of XCO_2 seasonal variation from fitting seasonal cycle of simulating daily XCO_2 derived from Carbon-Tracker 2015 from June 1 2009 to May 30 2014 with 3 day time resolution.

The month of minimum XCO_2 and the month of maximum in XCO_2 seasonal variation, which is extracted using fitting XCO_2 seasonal cycle from the temporal variation of mapping $ACOS-XCO_2$ data, are shown in Figure 3. It can be seen from Figure 3 that both of the month of maximum XCO_2 and minimum XCO_2 changed with the latitudinal band in the northern hemisphere.

Figure 3. The month of peak in XCO_2 seasonal variation is extracted from fitting seasonal cycle of mapping ACOS-XCO₂ observed by GOSAT from June 1 2009 to May 30 2014 with 3 day time resolution, (a) the month of minimum XCO_2 ; (b) the month of maximum XCO_2 .

Moreover the amplitude magnitude of ACOS-XCO₂ is agreement with the amplitude contour of ACOS-XCO₂ 8 ppm (Figure 4).

Figure 4. The amplitude of NDVI seasonal variation is extracted from fitting seasonal cycle of MODIS NDVI from June 1 2009 to May 30 2014 with 8 day time resolution which is overlapped with the amplitude contour of ACOS-XCO₂ seasonal variation in 4 ppm and 8 ppm.

4. CONCLUSION

This study probed the potential application of ACOS-GOSAT XCO_2 retrievals for assessment of vegetation absorption of atmospheric CO_2 . In order to study the continued variations of XCO_2 in space and time, a mapped XCO_2 dataset, generated by applying a geostatistical estimation method of spatio-temporal data to fill the gaps in original ACOS-GOSAT XCO_2 data, is used in this study. As a result, the mapped XCO_2 dataset captures the spatio-temporal variations of XCO_2 and the seasonal cycle of CO_2 concentration in space in good detail which is related with the absorption of vegetation for atmospheric CO_2 .

Acknowledgements

This research was supported by the National Research Program on Global Changes and Adaptation: "Big data on global changes: data sharing platform and recognition" (Grant No. 2016YFA0600303). The ACOS-GOSAT v3.3 data were produced by the ACOS/OCO-2 project at the Jet Propulsion Laboratory, California Institute of Technology, and obtained from the ACOS/OCO-2 data archive maintained at the NASA Goddard Earth Science Data and Information Services Center. We also acknowledge the GOSAT Project for acquiring the spectra. CarbonTracker CT2015 results are provided by NOAA ESRL, Boulder, Colorado, USA from the website at http://carbontracker.noaa.gov.

References

- Buchwitz, M., Reuter M., Schneising O., Boesch H., Guerlet S., Dils B., et al., (2015). The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO₂ and CH4 global data sets, Remote Sensing of Environment, 162, 344–362
- Crisp, D. B. M. Fisher, C. O'Dell, C. Frankenberg, R. Basilio, H. Bosch, L. R. Brown, R. Castano, B. onnor, M. Deutscher, A. Eldering, D. Griffith, M. Gunson, A. Kuze, L.Mandrake, J. McDuffie, J. Messerschmidt, C. E. Miller, I. Morino, V. Natraj, J. Notholt, D. M. O'Brien, F. Oyafuso, I. Polonsky, J. Robinson, R. Salawitch, V. Sherlock, M.Smyth, H. Suto, T. E. Taylor, D. R. Thompson, P. O. Wennberg, D. Wunch & Y. L.Yung (2012), The ACOS CO₂ retrieval algorithm Part II: Global XCO₂ data characterization, Atmos. Meas. Tech. Discuss., 5, 687-707.
- Hungershoefer, K., Breon, F.-M., Peylin, P., Chevallier, F., Rayner, P., Klonecki, A., & Houweling, S. (2010). Evaluation of various observing systems for the global monitoring of CO₂ surface fluxes, Atmos. Chem. Phys. Discuss., 10, 18561-18605, doi:10.5194/acpd-10-18561-2010.
- Lindqvist, H.; O'Dell, C.W.; Basu, S.; Boesch, H.; Chevallier, F.; Deutscher, N.; Feng, L.; Fisher, B.; Hase, F.; Inoue, M., et al. 2015. Does gosat capture the true seasonal cycle of carbon dioxide? Atmospheric Chemistry and Physics, 15, 13023-13040
- O'Dell, C. W., Connor, B., B"osch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, M.,McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I.,Smyth, M., Taylor, T., Toon, G. C.,Wennberg, P. O., & Wunch, D. (2012) The ACOS CO₂ retrieval algorithm – Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5,99–121, doi:10.5194/amt-5-99-2012.
- Schimel, D.; Pavlick, R.; Fisher, J.B.; Asner, G.P.; Saatchi, S.; Townsend, P.; Miller, C.; Frankenberg, C.; Hibbard, K.; Cox, P., 2015. Observing terrestrial ecosystems and the carbon cycle from space. Global change biology, 21, 1762-1776.
- Schneising, O., Buchwitz, M., Reuter, M., Heymann, J., Bovensmann, H., & Burrows, J. P., 2011. Long-term analysis

of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY, Atmos. Chem. Phys., 11, 2863–2880, doi:10.5194/acp-11-2863-2011.

- Vetter, P.; Schmid, W.; Schwarze, R. 2015. Spatio-temporal statistical analysis of the carbon budget of the terrestrial ecosystem. Statistical Methods & Applications.
- Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher, B., Osterman, G. B., Frankenberg, C., Mandrake, L., O'Dell, C., Ahonen, P., Biraud, S. C., Castano, R., Cressie, N., Crisp, D., Deutscher, N. M., Eldering, A., Fisher, M. L., Griffith, D. W. T., Gunson, M., Heikkinen, P., Keppel-Aleks, G., Kyr^o, E., Lindenmaier, R., Macatangay, R., Mendonca, J., Messerschmidt, J., Miller, C. E., Morino, I., Notholt, J., Oyafuso, F. A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, R. J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thompson, D. R., Uchino, O., Warneke, T., & Wofsy, S. C. 2011. A method for evaluating bias in global measurements of CO₂ total columns from space, Atmos. Chem. Phys., 11, 12317–12337, doi:10.5194/acp-11-12317-2011.
- Yokota, T., Oguma, H., Morino, I., & Inoue, G. (2004). A nadir looking SWIR FTS to monitor CO₂ column density for Japanese GOSAT project, Proc. Twenty-fourth Int. Sympo. on Space Technol. and Sci. (Selected Papers), 887–889.
- Zeng, N.; Zhao, F.; Collatz, G.J.; Kalnay, E.; Salawitch, R.J.; West, T.O.; Guanter, L., 2014. Agricultural green revolution as a driver of increasing atmospheric co₂ seasonal amplitude. Nature, 515, 394-397.