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ABSTRACT:  
It is not exactly known how the seasonal variations of CO2 concentration such as its seasonal peak and amplitude etc., 
are influenced by vegetation carbon absorption. This paper presents the seasonal changing trend of CO2 concentration 
affected by the seasonal activity of vegetation carbon absorption observed by Greenhouse Gases Observing Satellite 
(GOSAT). We extracted the seasonal changing characteristic values of CO2 concentration using the global mapping 
of column-averaged CO2 dry-air mole fraction (XCO2) retrievals from GOSAT observing data during June 2009 to 
May 2014. The seasonal changing characteristic values of CO2 concentration mainly include the amplitudes, the peak 
and its time of XCO2 seasonal variations. As a result, it is found that the amplitude of XCO2 seasonal variation is 
spatially corresponding to that of the normalized difference vegetation index (NDVI) from Moderate Resolution 
Imaging Spectroradiometer (MODIS) which could indicate the magnitude of vegetation carbon absorption. 
Additionally the seasonal variation of XCO2 is strongly correlated with the seasonal variation of NDVI over 
vegetation covers in the northern hemisphere.  
 
 
1. INTRODUCITION 
 
Satellite observation of atmospheric CO2 such as Greenhouse Gases Observing Satellite (GOSAT) and Obit Carbon 
Observation (OCO-2) offers us new opportunities to know the mechanism of land biosphere absorption for CO2 as its 
advantage of global coverage and high measurement density comparing to in-site measurements (Buchwitz et al, 
2015, Hungershoefer et al., 2010, Crisp et al.,2004; Yokota et al., 2004). The patterns of XCO2 distribution averaged 
over a long period of several years are mostly affected by distribution of the underlying surface fluxes (Schneising et 
al., 2011). It is not completely clear what is the spatial differences  of seasonal variation of CO2 concentration in a 
global scale although we know that the seasonal cycle of CO2 is mainly induced by the seasonal activities of biosphere 
absorption for CO2 [Zeng et al., 2014; Schimel at al., 2015].  

In this paper we applied the global XCO2 mapped from GOSAT XCO2 data to extract the seasonal changing 
characteristics of XCO2 and analyze these characteristics related with the vegetation absorptive strength using NDVI 
data.  
 
2. USED DATA AND PROCESSING 
 
2.1 Raw XCO2 data 
 
We collected the raw XCO2 data (ACOS-GOSAT v3.3, http://co2web.jpl.nasa.gov) produced by the Atmospheric 
CO2 Observations from Space (ACOS) project from applying the Orbiting Carbon Observatory (OCO) calibration, 
validation, and remote sensing retrieval algorithm to the GOSAT spectral measurements spanning from June 2009 
through May 2013 (O’Dell et al., 2012; Wunch et al., 2011). We extracted those land-only data with high gain flag 
from those raw ACOS-GOSAT v3.3 XCO2 retrievals. The data is first filtered using the advanced screening criteria to 
extract the good soundings, and then  bias-corrected to remove the systematic bias in the XCO2 retrievals, as 
recommended by ACOS data users’ guide (Wunch et al., 2011, Crisp et al., 2012). The filtered and bias-corrected data 
are referred to as ACOS-XCO2 hereafter. It is reported that the bias-corrected data is uncertain to ~0.3 ppm when 
compared with data from Total Carbon Column Observing Network (TCCON) (ACOS User Guide, 2014), and 
ACOS datasets show more stable performance comparing with the other several individual satellite retrieval 
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