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ABSTRACT: This paper developed and investigated a LiDAR-based canopy cover estimation model using metrics 

that can be derived from the distribution of points based on pulse origin. For a specific airborne system with 4 discrete 

returns, each point may possibly belong to ten (10) classes. Accordingly, this grouping can be used to infer other 

canopy biophysical characteristics like canopy cover. The method was tested over a 2-hectare forest plantation (FP) 

site against field measurement of canopy cover generated through Digital Hemispherical Photography (DHP) survey 

conducted on 15-24 February, 2015. The FP site was established in 1998 at 2m x 5m plant spacing and is characterized 

predominantly by mature Caribbean Pine trees with diameter at breast height ranging from 5cm-55.5cm and canopy 

height ranging from 13.01m-34.34m. The corresponding LiDAR point cloud data was acquired using Optech™ 

ALTM Gemini on August 16, 2013 at a flying height of 1979.547 masl. Field canopy cover observed in the FP site 

ranges from 48.87% to 72.39%. Results show that LiDAR canopy cover estimation for the FP was observed at R2 = 

0.7088 with a 2.97 percent canopy cover RMSE. 

 

1. INTRODUCTION 

 

Forest characterization with remote-sensing technology, specifically with the airborne light detection and ranging 

(LiDAR) data has provided opportunities for the availability of reliable, accurate, and up-to-date information to 

support decision-making in monitoring and management activities across a range of spatial and temporal scales 

(Wulder et. al., 2008). Among the forest structural attributes that can be derived from LiDAR is the canopy cover, 

defined as the area of the ground obscured by the vertical projection of the tree canopy when viewed at a single point. 

Various field-based canopy cover measurement methods have been used across forestry research studies like sighting 

tubes, line-intercept sampling, densiometers, and digital hemispherical photography (DHP) (Korhonen et. al., 2006; 

and Fiala et. al., 2006). DHP is among the mature and relatively time-efficient, indirect optical field technique capable 

of generating reliable and accurate canopy cover measurements across forest classes, widely used as a validation or 

calibration technique for remotely-sensed data (Morsdorf et. al., 2006; Palletto & Tosi, 2009; Smith et. al., 2009; and 

Gonsamo et. al., 2013). DHP utilizes a camera and fisheye lens system to acquire permanent records of canopy 

structure and geometry distributions. 

 

With the increasing availability of airborne LiDAR data in the Philippines, this paper attempts to design and 

investigate an approach for profiling LiDAR point cloud distribution into groups or family of returns to measure 

canopy cover. Particularly, a regression modeling approach is introduced as a means to estimate canopy cover. To 

validate the results of the modeling exercise, LiDAR-derived canopy cover values was compared with DHP-generated 

canopy cover from a forest plantation (FP). 

 

2. STUDY AREA 

 

The study was conducted over a 2-hectare forest plantation (FP) site covered within a reforestation project of the 

Philippine Government in the Province of Bukidnon which commenced on February 1989 with the funding and 

technical assistance by New Zealand through Bukidnon Forests Incorporated (Clark, 1993). The FP site was 

established in 1998 at 2m x 5m plant spacing and is characterized predominantly by mature Caribbean Pine (Pinus 

caribaea) trees with diameter at breast height ranging from 5cm-55.5cm and canopy height ranging from 13.01m-

34.34m (Argamosa et. al., 2016). The FP site is located in Barangay Silo-O, Municipality of Malitbog, Bukidnon 

Province, Philippines and approximately situated at geographical coordinates 124° 59' 26.9052" N and 8° 29' 

22.2504" E with elevation ranging from 970.58 m above sea level (asl) to 1009.80 masl (Figure 1). 
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Figure 1. Location map of the 2-hectare FP site in Barangay Silo-O (c), Municipality of 

Malitbog (b), Province of Bukidnon, Philippines (c). 

 

3. METHODOLOGY 

 

3.1 Plot Design and Layout 

 

The 2-hectare study area was first divided into 20m x 20m plots making a total of fifty (50) grids. Canopy images 

were then acquired from the established DHP set-up points situated approximately at the center of the grids as shown 

in Figure 2. 

 

 
Figure 2. DHP plot layout and design in the FP site. 

 

 

 

 



3.2 LiDAR Data 

 

The airborne LiDAR data for Silo-O, Malitbog, Bukidnon was generated from Flight 388G acquired on August 16, 

2013 using Optech™ ALTM Gemini at an average flying height of 1979.547 masl (UP TCAGP, 2015). 

 

Table 1. Scanning characteristics of LiDAR data. 

System Specifications Data Attributes 

Scanning Equipment ALTM Gemini* 

Acquisition Date August 16, 2013* 

Flying Height (masl) 1979.547* 

Scan Angle (°) -20, 8 

Number of Returns per Laser Pulse 4 

Number of First Returns 40684 

Number of Intermediate Returns 3386 

Number of Last Returns 40450 

Number of Single Returns 32037 

Average Point Density per m² 2.17 

Average Point Spacing per m² 0.68 

Average Pulse Density per m² 1.67 

Average Pulse Spacing per m² 0.77 

* UP-TCAGP (2015) 

 

3.3 DHP-Generated Field Canopy Cover 

 

A Nikon D40X digital single reflex camera and Rokinon 8mm F/3.5 aspherical, full frame fisheye lens mounted on 

a tribrach and tripod system was used to capture north-oriented, upward-looking canopy images of the FP site on 

February 15-24, 2015 at the inherent highest possible maximum resolution (3872 x 2592 pixels). Each DHP set-up 

was levelled using a two-axis bubble level and consequent hemispherical images were taken at instrument height of 

1.3m, either early in the morning or late afternoon, or when there is no direct sunlight passing through canopy can be 

captured in the photographs to have a good visual discrimination of the sky and vegetation elements and minimize 

occurrence of mixed pixels. All DHP images were taken from the camera and fisheye lens system with uniform 

settings, aperture of f/8, shutter speed of 1/40,50 seconds and ISO 100 resulting to an exposure value of 11.33 and 

11.67, respectively. 

 

Nominal canopy cover (CCN) was then then generated considering a 100° field of view angle of the hemispherical 

image samples, wherein a maximum likelihood classification tool embedded in ArcGIS 10.2.2. software was applied 

to quantify the portions of sky and vegetation. CCN can then be related to DHP canopy cover (DHPCC) by: 

 

𝐶𝐶𝐷𝐻𝑃 = 𝐶𝐶𝑁
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The area normalization factor, (
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𝑟𝑖
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2 ) based on the pixel radius (r) within a per zenith angle view expressed as 

𝑦 = 0.6927𝑥−1.093, where y is the area normalization value at a given zenith angle x, was introduced to the binarized 

(sky/gap and vegetation) hemispherical image samples to account for the exaggerated area of canopy cover with 

increasing angle of view towards the edges of the photographs (Posilero, et. al., 2016). 

 

3.4 LiDAR-Based Canopy Cover Estimation 

 

The corresponding classified LiDAR (ground and vegetation points) data of the 2-hectare FP site (Figure 3a) was 

normalized (Figure 3b) using a point cloud data processing software so that all ground points will have an elevation 

of zero while the vegetation points which represent the trees will have relative heights above a flattened ground. 

Consequent processing of the normalized LiDAR data was done using an automated script presented in the workflow 

of classifying the family of returns (Figure 4). A 1.3m height above ground cut-off was first introduced to the 

normalized data similar to the DHP set-up acquisition height, wherein points falling below this threshold will be 

dropped, making sure that only vegetation points will be considered in the consequent processing. Point metrics, such 

as X, Y, Z coordinates, return number, number of returns for a given pulse and corresponding GPS time was generated 

from the remaining LiDAR vegetation returns. From this information, vegetation points with similar GPS time were 

grouped into ten (10) family return classes, namely: 1 Only (1_0), 1 of 2 (1_2), 2 of 2 (2_2), 1 of 3 (1_3), 2 of 3 (2_3), 

3 of 3 (3_3), 1 of 4 (1_4), 2 of 4 (2_4), 3 of 4 (3_4), and 4 of 4 (4_4). To compare LIDAR-derived and DHP-based 



canopy cover, there is a need to confine the comparison within the field of view of the DHP. A 10m circular radius 

buffer for each DHP set-up point was then made and used to clip the family return classes. 

 

 
Figure 3. Height normalization of LiDAR point cloud data.  

 

 

 
Figure 4. Workflow for classifying LiDAR points into family of return. 

 

To account for the area coverage of the family return classes clipped within each DHP extent, beam radius (ri) of the 

of the LiDAR pulses were also computed at different return heights (𝑧𝑖) considering the beam divergence (θ = 0.25 

mrad) and flying altitude during LiDAR data acquisition using: 

 

𝑟𝑖 = (𝑓𝑙𝑦𝑖𝑛𝑔 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 − 𝑧𝑖) (𝑡𝑎𝑛
𝜃

2
)                             (2) 

 

The computed beam radius across the 35-meter LiDAR point return height in the FP site can be expressed as y = -

0.0001x + 0.2474, where y is the beam radius at a given LiDAR point return height x (Posilero et. al., 2016). 

 

Ten LiDAR point family classification coefficients were then derived using what-if analysis tool (Microsoft Office 

Excel Solver add-in) and a simple linear regression model was designed and tested based on the comparison of CCDHP 

and CCLiDAR in the FP site using: 

 

𝐶𝐶𝐿𝑖𝐷𝐴𝑅 = 𝐾 + ∑ 𝐹𝑖𝑎𝑖
𝑛
𝑖=1                                                                                                                                            (3) 

 

where CCLiDAR is the LiDAR-derived canopy cover, K is the intercept, Fi is the coefficient of the ith family return  

extent. 

 

 

 

 

 

 



4. RESULTS AND DISCUSSION 

 

LiDAR family return classes generated is presented in Table 2. Majority of the vegetation points were classified 

under 1_0. These are the laser pulses which recorded only 1 laser return from the canopy. In general, LiDAR family 

return classes can be broadly categorized as family of 1 (1_0), family of 2 (1_2, 2_2), family of 3 (1_3, 2_3, 3_3) and 

family of 4 (1_4, 2_4, 3_4, 4_4) (Figure 5). Using these categories, returns belonging to family of 2 actually have the 

most number of points constituting about 39% followed by family of 3, family of 1, and family of 4, respectively. 

Information values from these distinctive LiDAR family classification and distribution can then be utilized as useful 

input for canopy cover estimation. 

 

Table 2. Distribution of LiDAR family return classes. 

Family Return Class Number of Points Percentage 

1_0 13859 20.53 

1_2 13158 19.50 

2_2 13158 19.50 

1_3 6885 10.20 

2_3 6885 10.20 

3_3 6885 10.20 

1_4 1666 2.47 

2_4 1666 2.47 

3_4 1666 2.47 

4_4 1666 2.47 

 

 

 
 



 
Figure 5. Plots of the LiDAR return classes aligned as: (a) family of 1, (b) family of 2, (c) family of 3, and 

(d) family of 4. 

 

Field canopy cover generated from the hemispherical image samples and corresponding LiDAR canopy cover 

estimates of the FP site is presented in Table 3. Based on the results, CCDHP and CCLiDAR lies on the same magnitude 

having ±3.22% standard deviation with canopy cover ranges of 48.87 to 72.39% at an average of 61.14% and 53.70-

70.71% at an average of 61.13%, respectively. A minimal absolute average difference of 2.69% between the field 

and estimated canopy cover values was also observed and based on the international definition and classification of 

forests (FAO, 2001), the FP site can be categorized as a closed Caribbean Pine forest plantation. 

 

Table 3. CCDHP and CCLiDAR generated from the FP site. 

DHP Number CCDHP CCLiDAR Difference  DHP Number CCDHP CCLiDAR Difference 

2 49.86 55.01 -5.15  27 56.77 61.36 -4.59 

3 61.51 60.26 1.25  28 60.43 62.75 -2.32 

4 61.57 56.37 5.19  29 59.05 62.38 -3.33 

5 53.66 56.97 -3.31  30 57.63 61.94 -4.31 

6 61.75 61.94 -0.19  31 54.30 55.66 -1.37 

7 63.96 65.94 -1.99  32 57.19 58.79 -1.61 

9 59.25 60.74 -1.50  34 56.22 57.61 -1.39 

10 54.49 59.88 -5.38  35 59.58 56.90 2.68 

11 65.93 62.43 3.50  36 52.77 53.77 -1.00 

12 66.09 66.51 -0.42  37 58.73 56.15 2.58 

14 69.35 69.08 0.28  38 61.55 61.61 -0.06 

15 62.88 62.18 0.70  39 61.46 63.20 -1.74 

16 66.97 63.65 3.32  41 48.87 53.70 -4.84 

17 61.43 65.58 -4.15  42 60.16 58.14 2.02 

18 72.39 67.36 5.03  43 56.61 59.35 -2.74 

20 66.19 66.11 0.08  44 60.13 55.92 4.20 

21 65.12 62.87 2.25  45 64.83 70.71 -5.88 

22 62.10 60.28 1.82  46 63.14 59.27 3.87 

23 65.26 60.61 4.65  47 70.16 63.87 6.28 

24 65.58 64.50 1.07  48 69.90 67.48 2.42 

25 59.32 60.06 -0.74  49 66.94 63.97 2.97 

26 60.99 57.81 3.17  50 58.20 59.02 -0.82 



In general, the regression model tends to overestimate CCDHP in the FP site, particularly on the denser canopies. The 

overestimation may have been introduced from the high porosity of the pine canopy elements wherein quantification 

of the area covered by the vegetation points were partially based. The overestimation could also be attributed to the 

temporal discrepancy in the acquisition of LiDAR data and field DHP survey since more than 18 months have passed 

since the LIDAR data has been acquired. Changes in canopy elements could have occurred in between the period, 

especially due to plant growth where the pine trees could have shed-off its lower needle-leaves, cones, and branches. 

Furthermore, seasonality could have also affected the assessment of the CCDHP. It can also be observed from the 

LiDAR family return class weights (Table 4) that F3_4, F2_4, and F1_3 are the top predictor variables of canopy cover 

in the FP site followed by F2_3, F3_3, and F1_4, respectively. This observation can be inferred from the overlapping 

conical form of canopy growth characteristic to pine tree species in the FP site, and in the fact that majority of these 

LiDAR family returns generally lie on the upper part of the canopy height profile. 

 

Table 4. Family return class weights in the FP site. 

Coefficients, F 

K 60.59026765 

1_0 -0.947134511 

1_2 7.256800886 

2_2 -6.969782444 

1_3 -16.77116648 

2_3 9.556533989 

3_3 9.290593158 

1_4 9.249854118 

2_4 19.55162316 

3_4 -30.12695338 

4_4 0.699811279 

 

Looking further on the residual plot of the FP site (Figure 6), the regression model exhibited a random and 

unpredictable (stochastic) error. In other words, the model is correct on average for all the predicted values. 

 

 
Figure 6. Residual plot of the FP site (CCLiDAR). 

 

After the outliers have been detected and removed from the analysis using the mean plus or minus two standard 

deviations of the residuals, the regression model was able to perform at R2 = 0.6256 (Figure 7) and at 3.044 percent 

canopy cover RMSE. 
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      Figure 7. Regression plot of the FP site (CCLiDAR vs CCDHP) with outliers removed. 

 

In addition, the regression model was also able to outperform the return ratio method in deriving canopy cover (CCRR). 

This is done merely by dividing the number of first returns above some height threshold over all returns for a specific 

grid size (Hopkinson & Chasmer, 2009), which was observed at R2 = 0.1826 and RMSE = 32.1778 (Figure 8). 

Residual plot of CCRR also suggest that the model tend to exhibit clear trend, overestimating canopy cover values 

(Figure 9). 

 

 
Figure 8. Regression plot of the FP site (CCRR vs CCDHP). 
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       Figure 9. Residual plot of the FP site (CCRR). 

 

5. CONCLUSION 

 

The designed and tested regression model making use of LIDAR family of returns was capable of producing accurate 

canopy cover estimates in the FP site. Furthermore, the analysis of LiDAR point cloud data based on family of returns 

provided a new insight in viewing the distribution of the vegetation points. With the application of area normalization 

factor to fully utilize the maximum field of view angle in hemispherical images and likewise, using the computed 

beam radius used to quantify area coverage of the LiDAR vegetation points could also be a reasonable approach in 

experimenting and identifying relationship towards an improved accuracy of LiDAR-derived canopy cover. 
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