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ABSTRACT: Previous studies documented the effectiveness of LiDAR intensity and height information in land 

cover and land use mapping. The fusion and combined use of LiDAR and other remotely sensed data has been widely 

explored, too. With the scarcity of available imagery data, this study focuses on mapping rice fields from LiDAR data 

only using object-based method. Initially, confusion among classes was observed in doing Support Vector Machine 

(SVM) classification because of the presence of too many input variables, which contain irrelevant and redundant 

information. Accordingly, a feature selection technique was employed to assess the features and the variables derived 

from the selection process. In this study, five Decision Trees (DT) were constructed to evaluate the importance of 48 

variables derived from nine LiDAR intensity metrics and three height layers. The input layers were filtered for SVM 

classification based on the results of the DT. The effectiveness of the method was assessed in three different locations. 

By using the method developed in this study, the overall accuracy and kappa index of agreement were increased, 

saving time and minimizing inputs for SVM. The DT-based feature selection for SVM enabled the reduction of 

variables by least 70%, while cutting the processing time shorter by a minimum of 59% reduction. 

 

1. INTRODUCTION 

With the Philippines’ embarking on the Light Detection and Ranging (LiDAR) technology, the Nationwide Detailed 

Resources Assessment using LiDAR, also known as the Phil-LiDAR 2 Program, has been created as an offshoot 

program of the Disaster Risk Exposure and Assessment for Mitigation (DREAM). This three-year program, funded 

by the Department of Science and Technology (Blanco A. C., Tamondong, Perez, Ang, & Paringit, 2015), highlights 

the development of methods and algorithms that extract detailed resource features from LiDAR and secondary RS 

data. Extraction of various natural resources include agricultural, coastal, hydrological, forestry and renewable energy 

sources. 

The major outputs of Phil-LiDAR 2 are detailed resources map that more or less contain land use and land cover 

features. These features are classified using various workflows that utilize Object-Based Image Analysis (OBIA) and 

Support Vector Machine (SVM) classification (Blanco A. C., et al., 2016). As the volume of the LiDAR datasets rise, 

these workflows have inherent limits, which are but not limited to processing time and hardware capabilities. 

Hence, this research focuses on developing a methodology that aids SVM classification using Decision Tree algorithm. 

In particular, this study is on mapping rice fields using intensity and height metrics derived from LiDAR datasets.  

1.1 Importance of Mapping 

There are a number of mapping techniques widely used nowadays. One of these techniques is the LiDAR (Light 

Detection and Ranging) technology. It uses remote sensing to capture topographical images (point-clouds) that can 

be translated into data information. In the Philippines, LiDAR technology is used for mapping flood prone areas for 

disaster mitigation. It is also used for agricultural resources mapping, coastal mapping, hydrological resources 

mapping, forest mapping and renewable energy mapping (Blanco A. C., Tamondong, Perez, Ang, & Paringit, 2015). 

Mapping of agricultural resources, especially in the Philippines, is very important. When it comes to food security, it 

is crucial to know where the rice is planted and harvested. Such information can be used for research and development 

and it will contribute to a better assessment of geographic variations in food supply (International Rice Research 

Institute, n.d.). 

Since the Philippines is prone to typhoons, decision making related to this matter is vital. The extracted maps will 

help the government find solutions and prioritize actions to alleviate damage in the agricultural resource of the country. 



 

Figure 1. Rice extent map of the Philippines 2000-2012 from MODIS Imagery (2015) with over all accuracy of 

78.8 % (International Rice Research Institute, n.d.). 

In 2009, the country’s rice yield decreased due to tropical storms “Ondoy” and “Pepeng”. It only raised 3.59 tons per 

hectare of rice compared to the year 2007 and 2008, which raised 3.8 and 3.77 tons per hectare of rice, respectively 

(International Rice Research Institute, n.d.).  

The extracted maps will help the government create necessary plans to meet potential food shortages. Given that rice 

is the most important crop for most Asian countries, including the Philippines (Remote Sensing-Based Information 

and Insurance for Crops in Emerging Economies, n.d.). 

1.2 Works on Land Cover Mapping 

Land cover maps support a broad range of applications, such as in “forestry, natural hazards, urban climatology and 

agriculture” (Stefanski, Mack, & Waske, 2013). Human surveys became impractical as the need to create land cover 

maps with larger geographical areas increased. Therefore, land cover mapping that uses aerial and satellite images 

has greatly reduced the amount of resources expended in the generation of such maps (Aonpong, Kasetkasem, 

Rakwatin, Kumazawa, & Chanwimaluang, 2016).  

In essence, a land cover map shows “the observed biophysical cover on the Earth’s surface” as per FAO definition of 

land cover. The level of detail of the biophysical covers present in a particular study area depends on the input images 

used. As far back as 2009, it was found that RADARSAT-2 data can be used to distinguish rice fields between other 

low vegetation classes. (Hoang, Bernier, Duchesne, & Tran, 2011) By 2011, classification accuracies of more than 

90% were already achieved for main forest classes in a study conducted by Hoan et al. in mapping a tropical forest 

using optical and microwave data of ALOS. 

A number of satellite images have become available to the public in the previous years that aided the production of 

land cover maps. In December, 2008, even the Landsat data became available to the public at no charge. Because of 

the availability of such data, image processing algorithms were applied to the available aerial and satellite data in 

performing classification of land cover features, such as water, forest and grassland.  

Earlier remotely-sensed data had relatively low resolution, which introduced several problems in classifying land 

cover classes. A multi-layer approach has been proposed by Sophie et al. to address the “critical requirements of 

stability.” Another problem with the then available remotely-sensed data was the shadow, which has been addressed 

in the research conducted by Kasetkasem and Varshney in 2011. 

In 2011, Zhai et al. were able to map a 68,401-square-kilometer island using Landsat data with an accuracy of 79.80%. 

In the same year, an accuracy of 83.93% was achieved by Liao on a national-scale land cover map. Though it seemed 

that the input image limits the quality of the classification of the land cover classes, accuracy of the generated land 

cover maps according to Aonpong, et al. is largely dependent on the algorithm used.  

Image processing techniques that have been applied to remote-sensing images shifted from the conventional pixel-



based approach to the object-based image analysis (OBIA). In OBIA, the adequacy of the classification methods is 

greatly dependent on the accuracy of the segmentation used (Stefanski, Mack, & Waske, 2013). While OBIA is the 

key factor in the accuracy of the land cover map created then, the adequate classification result relied on the quality 

of the segmentation.  

As data with higher resolutions, such as LiDAR, become available, improvements were introduced. Automations in 

the land cover classification were made using Landsat TM/ETM+ images (Licciardi, Pratola, & Frate, 2009). Data 

fusion, such as in the study conducted by Barbanson et al., applied fusion to LIDAR and RADAR data at the feature 

level. 

Hyperspectral images aided in the advanced classification of land cover. Integration of LiDAR and hyperspectral 

images improved classification accuracy. However, García-Sopoet al. in 2015 found that in order to be successful in 

integrating data when performing classification, it is highly needed that some aspects be addressed such as those that 

are “related with radiometric and geometric distortions.” While data fusion generally applies to image layers, other 

information can be attributed to the image layers to improve the classification. Other details, such as crop rotation 

information can be fused with multi-temporal high-resolution optical images to improve the results of the 

classification (Osman, Inglada, Dejoux, Hagolle, & Dedieu, 2012). A very high resolution IKONOS-2 was used by 

Gil and Abadi in 2015 and it was found that this image has been accurately classified especially by using k-Nearest 

Neighbor and Maximum Likelihood Classifications. 

In 2013, a robust methodology was made that can even attain accuracies of more than 90% (Berger, Voltersen, Hese, 

Walde, & Schmullius, 2013) by fusing LiDAR and HSR multi-spectral data, hence, a detailed urban land cover map 

has already been achieved in that year. By using LiDAR data alone and working on height and intensity data, user 

and producer accuracies that range from 86.8% to 93.6% have already been achievable in 2013 (Zhou, 2013). 

A new land cover mapping technique was introduced by combining the strengths of the Random Forest Algorithm 

and the Level Set Method (Aonpong, Kasetkasem, Rakwatin, Kumazawa, & Chanwimaluang, 2016). Superresolution 

mapping is currently being applied on land cover mapping that is able to produce fine spatial resolution out of a 

coarse-spatial-resolution image (Ling, Foody, Ge, Li, & Du, 2016).Recent improvements in land cover mapping are 

focused on developing algorithms and on increasing the resolution of the land cover map, along with the accuracy. 

1.3 Rice Production in Region IV-A 

According to the Department of Agriculture-Region IV-A, the production of rice in the region increased by 7,775 

metric tons from 391,418 metric tons in 2007 to 399,193 metric tons in 2011. But in addition, the yield per hectare 

declined from 3.74 metric tons in 2007 to 3.50 metric tons in 2011 due to conversion of rice fields to commercial and 

residential area (Department of Agriculture, n.d.). 

 

Figure 2. Rice production in Region IV-A from year 2000 to 2012 (Philippine Statistics Authority, 2016). 

The harvested rice was classified into two - irrigated rice (during dry season) and rainfed rice (during wet season). 

The production for irrigated rice from the region was increased by 5,744 metric tons from an output of 314,735 metric 

tons in 2007 to 320,479 metric tons in 2011. The rainfed rice in the region increased by 2,031 metric tons from an 

output of 76,683 in 2007 to 78,714 metric tons in 2011 (Department of Agriculture, n.d.). 



2. METHODOLOGY 

2.1 Study Area and Materials 

The study covers the rice field area found in Maragondon, Cavite (14°14'23.56"N, 120°44'11.77"E), Calatagan, 

Batangas (13°52'43.91"N, 120°38'59.58"E) and Balayan, Batangas (13°57'4.90"N, 120°42'55.26"E). Combining all 

extracted rice from LiDAR, the data was accumulated to 455 hectares wherein Balayan, Batangas had the largest area 

calculated at 324 hectares of rice fields. 

  

Figure 3. Satelite imagery on Balayan, Batangas shown in Google Earth Pro (left) and land use land cover (LULC) 

map extracted using LiDAR data. 

The LiDAR data was sourced from the Disaster Risk and Exposure Assessment for Mitigation (DREAMTM). From 

the LiDAR point clouds, intensity metrics and height metrics were derived using LAStools. The images used were 

the derived intensity images (all) with three height metrics (Slope, DSM and nDSM). Since the work by Carranza & 

Blanco (2015) used nDSM and five focal statistics from uncalibrated LiDAR intensity, we added two layers as an 

additional representation for height variability of rice versus other land cover, as well as four focal statistics on 

intensity. Statistics were computed on a per object basis, including mean, standard deviation, mode and 50th quantile. 

In total, 48 variables were available as input for the training phase of both Decision Tree and SVM.  

Table 1. List of LiDAR derivatives. 

Acronym Meaning 

INT AVG Average intensity based on LiDAR points 
INT KUR Kurtosis of intensity based on LiDAR points 

INT MAX Maximum of intensity based on LiDAR points 

INT MIN Minimum value of intensity based on LiDAR points 
INT P01 1st Percentile of intensity based on LiDAR points 

INT P99 99th Percentile of intensity based on LiDAR points 

INT QAV Quadratic average of intensity based on LiDAR points 
INT SKE Skewness of intensity based on LiDAR points 

INT STD Standard deviation of intensity based on LiDAR points 

DSM Digital Surface Model  
nDSM Normalized Digital Surface Model 

SLOPE Computed gradient of the DSM raster 

2.2 Feature Selection 
 

Even with the use of LiDAR derivatives and orthophoto for SVM classification, confusion among classes were 

reported by Phil-LiDAR 2 partner institutions, testing various classifiers in different locations (David & Ballado, 

2015a; Jalbuena, et al., 2015; Pada, et al., 2015) With the unavailability of orthophoto for many LiDAR flight missions, 

classification can be even more challenging, resulting to slight decrease in accuracy (David & Ballado, 2015b). 



Classifiers can perform poorly because of the presence of redundant and irrelevant data. 

Relying solely on LiDAR derivatives for LULC mapping, many variables (e.g. 60 for this case) can serve as input for 

SVM training; in which unknowns are the redundant and irrelevant variables. Hence, a feature selection technique is 

necessary for this problem. Generally, there are three goals for implementing a feature selection technique: (1) to 

improve prediction performance of the predictor; (2) to provide faster and more cost-effective predictors; and (3) to 

provide better understanding of underlying process that generated the data (Guyon & Elisseeff, 2003). 

Although SVM performs well, a major drawback is its computational cost, particularly occurring on the training phase 

(Cristianini & Shawe-Taylor, 2000; Chang, et al., 2010). This happens because training the classifier requires solving 

a quadratic programming problem (QPP), which is a computationally expensive task (Cervantes, Farid García 

Lamonta, Mazahua, & Ruíz, 2015). Cervantes et al. (2015) further noted that solving the QPP becomes impractical 

when the data sets are huge because the amount of time and memory invested is between O(n2) and O(n3). 

Recently, studies are focusing on various data reduction techniques for SVM classification. Reduction techniques 

prior to SVM classification have been tested by Georgescu, et al. (2010), including Principal Component Analysis, 

Partial Least Squares, Structurally Random Matrices and Orthogonal Matching Pursuit. 

Decision Tree, a machine learning algorithm widely used in data mining, has been a tool for data reduction. DT is a 

binary tree wherein a series of decisions are made to segment the data into homogeneous subgroups (eCognition, 

2014). The decision tree is built by undergoing a recursive process; sorting data from a node, where a test is made 

based on an attribute, branching to another node, where another test is made, until it reaches a final classification at 

the leaf node (Mitchell, 1997). 

A novel algorithm was developed by López-Chau, et al. (2012) to select the most important sample from training data 

by guiding the sample selection giving more chance to be selected to those examples that are on the boundaries of 

clusters discovered by a decision tree. Although the size of training data was reduced, there was a slight decrease in 

the accuracy of the classifier; but they claimed that it works well for large datasets. 

More recently, Cervantes, et al. (2015) improved their previous work by applying a data filter based on a decision 

tree that scans the entire data and obtains a small subset of data points. They also noted that the proposed algorithm 

works very fast even with large data sets and that it outperforms the current state of the art SVM implementations 

without substantial reduction of accuracy. 

The built decision tree is not only used for prediction, but also for further data analyses. An important property of the 

constructed decision tree is its ability to compute the importance value (relative decisive power or information gain) 

for each feature (Mitchell, 1997; OpenCV). This can be performed in eCognition by querying the attributes of the 

trained DT using Query operation.  

Aside from its applications in remote sensing, DT has been a popular choice as a pre-processing step for SVM 

classification, as discussed above. For this study, five minimum number samples per node was arbitrarily chosen for 

all the decision trees. Furthermore, we applied a five-fold cross validation in order to address the issue of having 

either too few splits (poor predictive accuracy) or too many splits (complex tree).  

In a cross-validation procedure, the DT is computed from the learning samples and its predictive accuracy is tested 

by test samples. A poor cross-validation results when the costs for the test sample exceed the costs for the learning 

sample; thus, a different sized tree might cross-validate better (eCognition, 2014). 

For this particular purpose, we constructed five decision trees with the following set-ups: (1) Intensity metrics, (2) 

Intensity metrics + DSM, (3) Intensity metrics + Slope, (4) Intensity metrics + nDSM, and (5) Intensity metrics + 

DSM + Slope + nDSM. For SVM classification, three set-ups were made: (1) SVM with all intensity and height 

metrics, SVMALL, (2) SVM with features taken from the last trial of DT, SVMDT1, and (3) SVM with features whose 

importance are 10% and above based on the five DTs, SVMDT2.  

3. RESULTS AND DISCUSSION 

Examining the tables of importance generated from the five decision trees, we can say that the combination of LiDAR 

intensity and height is effective in mapping dominant land cover classes. LiDAR intensity images dominated the 

important variables for all the set-ups. This can be attributed to that fact the rice fields, because of wetness, have 

lower intensity values, while bare/fallow, grassland and vegetables have higher intensity values. 



It is worth mentioning, too, that LiDAR height information improved the accuracy and visual appeal of the results. 

Because rice and vegetable fields are found on the flat surfaces, their DSM values are also lower compared with 

bare/fallow from sugarcane fields. Hence, DSM topped the list on the table of importance for Balayan (Table 3) and 

Calatagan (Table 4). 

Based on the table of importance, we note that the use of additional variables such as quantile and mode can improve 

the classification, aside from the commonly used mean and standard deviation. 

The accuracy assessment for SVM trials are shown on Table 2. Clearly, the trials with DT-based SVM outperforms 

SVM with all input variables in terms of overall accuracy (OA) and kappa index of agreement (KIA). Both OA and 

KIA slightly increased by using SVMDT2 since important variables determined from previous trials were included as 

input for training. The Decision Tree used as a feature selection tool prior to SVM classification enabled the reduction 

of input variables with an average of 83%, while also reducing the processing time by an average of 76%. 

Table 2. Summary of results. 

 SVM 

Training & 

Classification 

Time 

(seconds) 

Number 

of 

Features 

Used in 

Training 

Overall 

Accuracy 

Kappa Index of 

Agreement 

Reduction 

of Time 

Reduction of 

Features 

Calatagan, Batangas 

SVMALL 843.453 48 0.8417 0.7245 --- --- 

SVMDT1 186.68 10 0.8588 0.755 77.87% 79.17% 

SVMDT2 180.281 10 0.9025 0.8292 78.63% 79.17% 

Balayan, Batangas 

SVMALL 1182.735 48 0.8588 0.6324 --- --- 

SVMDT1 320.109 8 0.8738 0.6911 72.93% 83.33% 

SVMDT2 484.109 13 0.8998 0.7339 59.07% 72.92% 

Maragondon, Cavite 

SVMALL 200.625 48 0.8797 0.7318 --- --- 

SVMDT1 35.157 3 0.9498 0.8864 82.73% 93.75% 

SVMDT2 30.109 5 0.9508 0.8905 85% 89.58% 

 

 
(a) SVMALL 

 
(b) SVMDT1 

 
(c) SVMDT2 

Figure 4. Comparison of outputs in rice field extraction for Maragondon, Cavite. 

Table 3. Table of importance from DT set-up 5 for Balayan. 

Feature Importance 

quantile[50](DSM) 0.238897481 

mode[Minimum](INT_P99) 0.175142065 

quantile[50](INT_AVG) 0.17014375 

Mean SLOPE 0.091130694 

Standard deviation NDSM 0.091036858 

quantile[50](NDSM) 0.089277064 

Mean NDSM 0.072209901 

Mean INT_SKE 0.072162187 

 



Table 4. Table of importance from DT set-up 5 for Calatagan. 

Feature Importance 

quantile[50](DSM) 0.305098842 

quantile[50](INT_STD) 0.129942575 

mode[Minimum](INT_MAX) 0.125614197 

quantile[50](INT_MAX) 0.114001578 

Standard deviation DSM 0.105589985 

quantile[50](NDSM) 0.066085711 

Standard deviation INT_AVG 0.048347663 

Standard deviation INT_MAX 0.043633902 

quantile[50](INT_AVG) 0.041946173 

quantile[50](INT_MIN) 0.019739374 

 

4. CONCLUSION 

The Decision Tree, which can generate a table of importance, forms the basis of evaluation for features that we think 

are helpful in the SVM classification. Moreover, the use of DT as a feature selection tool enables the assessment of 

each layers and the statistics derived from them. From the trials, we found that LiDAR intensity layers, alongside the 

chosen height layers, can enable mapping of rice as an alternative to other remotely sensed optical imagery. 

The methodology introduces an effective and efficient feature selection technique prior to SVM classification. In fact, 

the method enabled the reduction of input variables with an average of 83%, while also reducing the processing time 

by an average of 76%. It exhibits effectiveness in the sense that the classifier produced better generalization as it 

reduced misclassification indicated by the increase in overall accuracy and kappa coefficient. 
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