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ABSTRACT: In the framework of our research, we process jointly high spectral (hyperspectral) and high 
geometric (multispectral) resolution images with lower and higher spatial resolution respectively, exploiting their 
synergies, with aims to (a) generate a fused image of high spectral and geometric resolution, and (b) to improve 
spectral unmixing at sub-pixel level of hyperspectral images regarding estimation of endmembers and fractional 
abundances. To relate the two images much of the existing research work assumes that the spatial and spectral 
characteristics (responses) of the two sensors are known in advance. This assumption is true only for simulated 
data. When moving to real data, however, it is not obvious that the exact spatial and spectral sensor characteristics 
are accessible. The aim of this concrete work is to derive the relative sensor responses from the data, given 
(approximately) co-registered images. Recovering the relative spatial response amounts to reconstructing the 2D 
spatial blur kernel that integrates multispectral pixels into hyperspectral pixels. Conversely, to recover the relative 
spectral response we estimate the shapes and sizes of the 1D kernels that integrate hyperspectral bands into 
multispectral bands. The spectral and spatial response functions are coupled, in the sense that one must be known in 
order to directly solve for the other. In practice, we find that estimating them in two consecutive steps is sufficient. 
The proposed formulation includes non-negativity and other constraints, recovers remaining registration 
(translation) errors between the two images, and uses prior information to adjust to the shape of the spectral 
response (rectangular or ramp shaped) with either l1 or l2 norm regularization. The proposed method is tested with 
both real and simulated data, aerial, close-range and satellite, in the second case with ground truth. The results show 
that, also under real-world imaging conditions, it appears possible to compute the relative spatial and spectral 
responses in a data-driven manner. 
 
1. INTRODUCTION 

Hyperspectral images usually have lower spatial resolution than multispectral images. This is mainly because larger 
pixels are needed to achieve an acceptable signal-to-noise ratio (SNR) when the reflected energy is split into many 
narrow spectral bands. Recently, some researchers (Yokoya et al., 2012; Wycoff et al., 2013; Huang et al., 2014; 
Wei et al., 2015; Lanaras et al., 2015) use a multispectral image (MSI), with higher spatial resolution, to spatially 
enhance a hyperspectral image (HSI) with lower spatial resolution. This process is called hyperspectral super-
resolution or hyperspectral fusion. To fuse the HSI and the MSI most of the existing work assumes that the relative 
spatial and spectral responses of the two sensors are known. In reality, virtually all work on hyperspectral super-
resolution uses simulated data for evaluation, due to the difficulty of obtaining high-quality ground truth. Thus, the 
above assumption is always met. However, when moving to real data, the exact spatial and spectral sensor 
characteristics are not always known or may differ from the specifications due to aging of optomechanical and 
electronic components or a mismatch between the aerial/orbital environment and the laboratory (Wang et al., 2010). 
In addition, the HSI and MSI are often acquired with time difference and under different viewing angles, 
illumination and atmospheric conditions. The potential of the above mentioned hyperspectral fusion lies in a more 
accurate and detailed semantic interpretation of objects and their properties compared to original hyperspectral and 
multispectral images. Multispectral images are quasi standard, while hyperspectral images are increasingly acquired 
by several sensors and platforms (close-range, aerial and spaceborne), with applications often in environmental 
mapping, monitoring and change detection.  
 
The aim of this research is to derive the relative spatial and spectral sensor response (relative characteristics) from 
the data, given approximately co-registered HSI and MSI. Estimating the spatial response amounts to finding the 
2D spatial blur kernel that integrates MSI pixels into HSI pixels. In our approach, this also estimates remaining 
translational errors of the co-registration. To estimate the spectral response, we reconstruct the shapes and sizes of 
the kernels that integrate HSI bands into MSI bands. The spectral and spatial response functions are coupled, since 
one must be known in order to directly solve for the other. In practice, we found that estimating them in two 
consecutive steps is sufficient. Iterating the two steps is possible, but brings no significant improvement. Using 
images alone one can generally not recover absolute sensor characteristics, but only the relative response of one 
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sensor with respect to the other. However, approximate knowledge of absolute values can help initialize and guide 
the process, as explained below. 
 

 
 
Figure 1.  A visual representation of the underlying conceptual model used to estimate the relative spatial and 

spectral downsampling models of the MSI and HSI sensors. 
 
1.1 Image Formation Model 

We assume that both the spectral and spatial response functions are linear convolutions. A graphical overview of 
this model is shown in Figure 1. Below, we treat the two images not as 3D image cubes, but reordered to matrices 
with one pixel per column: H ∈ RBxp for the HSI and M ∈ RbxP for the MSI, with B > b the respective numbers of 
spectral bands, and P > p the number of image pixels. With the unknown relative spectral and spatial response 
functions R and B, the two images are thus, up to noise, related as RH = MS, where S is a matrix that spatially 
downsamples M according to the blur B, so S includes both blurring and downsampling. 
  
1.2 Related Work 

There is little work on estimating relative MSI/HSI sensor responses. As far as we know, this has been investigated 
only as a prerequisite for hyperspectral super-resolution, which itself is a quite recent topic. Simoes et al. (2015) 
formulate a regularized quadratic problem for estimating both response functions, assuming spectral response 
curves of known width in the MSI. Both spectral and spatial responses are regularized by penalizing their 
respective gradients. They also separately solve for spatial and spectral blur. In contrast to our work, non-negativity 
of the response is not enforced, and regularization is limited to quadratic penalizers, which in our experience tend to 
over-smooth the result. Yokoya et al. (2013) tightly constrain the spectral response to deviate only slightly from the 
known pre-launch values. The spatial response is modelled as a Gaussian blur, assuming perfect co-registration. Its 
variance is found by maximizing the cross-correlation between the gradients of the HSI and the downsampled MSI. 
Huang et al. (2014) have proposed an unconstrained solution for the spectral response, which has already been 
shown to lead to non-plausible results. 
 
1.3 Own Contribution 

Details of our previous work can be found in Lanaras et al., 2015. In this research, we focus on spatial and spectral 
sensor response issues, and propose a model with the following novel aspects. We consider non-negativity of the 
responses, which is physically reasonable and significantly stabilizes the estimation. For the spatial response we do 
not enforce a Gaussian blur, but rather only require it to be symmetric with respect to an unknown centre. We also 
refrain from regularization, which tends to affect the width of the blur kernel. Estimating the centre of the spatial 
response allows one to estimate small translational mis-registration errors between HSI and MSI. This is useful, 
since in practice accurate (sub-pixel) co-registration of images with different resolutions and possibly different 
geocoding is sometimes challenging. For the spectral response, apart from the l2 norm we use also the l1 norm for 
data fitting, to increase robustness to outliers and also because it is better suited for modelling steep, nearly 
rectangular spectral response functions as found in some MSI, such as ADS80 or Landsat-8 OLI (Cramer, 2011). 
We show in addition that, by applying the estimated relative sensor relations, one can detect areas, which deviate 
from the proposed model and may cause difficulties for a subsequent hyperspectral super-resolution. These areas 
are mainly due to multitemporal differences and could to a certain extent used for change detection. 
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2. RELATIVE SPATIAL RESPONSE 
 
The spatial resolution difference (ratio) between the MSI and HSI is S = 𝑃/𝑝, here assumed that S ∈ N+ (though S 
theoretically and for the proposed method could be non-integer). Let R0 ∈ RbxB be an initial approximation of the 
relative spectral response, which reduces the number of spectral bands from B to b. Using the approximate spectral 
response does not change the sharpness of the image, thus we can start from estimating the spatial response. 
 
Let h = R0 H ∈ Rbxp denote the image created from H having the spectral bands of M. We seek to estimate the blur 
that will optimally fit M to h under some spatial subsampling. To do so, we split the estimation into the horizontal 
and vertical blurring kernels, and compute these for every MSI band i. By splitting in two 1D kernels, we assume 
the blur is separable. This reduces the number of unknown coefficients and gives more stable results, while still 
allowing for a flexible, anisotropic representation of the blur. The search window size for the blur coefficients in 
the MSI resolution is W = (2k+1)S, where k ∈ N is expressed in HSI pixels and is determined semi-empirically (i.e. 
usually the spatial resolution difference between HSI and MSI is known, and we choose k and thus W to be 
significantly larger). For pixels j = 1, …., Z of h we extract Z 1D patches of size W from M, either horizontally or 
vertically. Z is the number of all HSI pixels for which the 1D kernel of size W (but now in HSI pixels) does not fall 
outside the HSI image (i.e. an image border of k HSI pixels is not processed). We solve the following optimization 
separately for each of the two 1D kernels and each MSI band i: 
 
arg min

!
||hi – Lbi )||2                  (1) 

 
subject to Gbi ≥ 0 (see Figure 2) 
 
where  bi ∈ RW are the unknown 1D coefficients of the blur, 
 hi ∈ RZ are the Z values of band 𝑖 at pixels 𝑗 , and  
 L ∈ RZxW is a matrix (including values of M) with Z rows of W-dimensional patches.  
 
G ∈ RWxW is a matrix of which each row computes the difference between two elements in bi with successively 
increasing distances to the centre of gravity of the blur (closer minus further element) (see Figure 2). The row for 
the element with the largest distance has only the respective element set to 1, to ensure non-negativity of all 
elements in bi. Note that the sequence of the rows of G can be arbitrary but we choose them such that the diagonal 
elements are 1. To find the centre of gravity (in horizontal and vertical direction), we first get a solution of Eq. (1) 
with G = Iw, with I the identity matrix to enforce non-negativity. The final 2D blur for band i is given by the 
product of the vertical and horizontal kernels, B = bver bhor

T. Eq. (1) is solved as a quadratic problem, using the 
interior point method (Boyd and Vandenberghe, 2004). The constraint shown in Figure 2 also enforces symmetry 
for the 1D kernel coefficients and decreasing or equal blur kernel coefficients from the centre of the kernel. The 
offset of the blur kernel’s centre of gravity from the centre of the window corresponds to the global, translational 
mis-registration between HSI and MSI. Note that we do not enforce that the sum of the blur coefficients is 1 
(though in practice it is always close to 1). This is done to compensate for global radiometric differences between 
the HSI and MSI. 
 

 
Figure 2. Visual explanation of the constraint of Eq. (1). 

 
3. RELATIVE SPECTRAL RESPONSE 
 
Given that the HSI bands are very narrow and assuming that they fully overlap with the MSI bands, we can express 
each MSI band i as a linear combination of HSI bands. The estimation of the spectral response R ∈ RbxB is thus 
independent for each row of R (i.e. each MSI band), which leads to the following optimization for the unknown 
spectral response ri ∈ RB of band i: 
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arg min
!

||F(mi - HTri )||1 + λi ||Dri||a                (2) 

 
subject to ri ≥ 0 
 
where mi ∈ Rp is the ith MSI band, spatially downsampled with the blur bi and λi ≥ 0 is a regularization parameter 
to enforce spectral response curve smoothness for band i, using the matrix operator D ∈ RB-1xB to compute the 
differences of each ri element of adjacent bands (current minus the right one in the electromagnetic spectrum). The 
diagonal matrix F = diag(m2

i1, …, m2
ip) ∈ Rpxp holds individual weights for the elements mi (individual pixels). 

Weights are selected such that pixels with higher intensity - and thus better SNR - in a band contribute more to the 
estimation of ri. Empirically, this weighting stabilizes the solution. The type of the norm a is selected to reflect 
prior knowledge about ri. Steep response curves require a = 1, whereas for smooth, gradually changing spectral 
response curves a = 2 is preferable. To solve Eq. (2), we again use the interior point method, starting from the 
approximate spectral response used in Section 2. In most cases, we know approximately the MSI and HSI spectral 
bandwidths, hence we can limit the search to a smaller number of bands 𝐵 < B. 𝐵 are the approximately known HSI 
spectral bands covering the spectral overlap between HSI and MSI in each MSI band extended on each side of the 
electromagnetic spectrum of the MSI band a bit more. The selection of the 𝐵 bands is done manually. Note, this 
only places soft lower and upper bounds on the spectral response curve, the exact spectral width of HSI and MSI 
bands need not be known. The parameters 𝜆! are set individually for each band, as discussed in Section 4.2. 
 
4. TEST DATA, RESULTS AND DISCUSSION 
 
4.1 Data 
 
The first dataset includes HSI and MSI aerial images covering the city of Wettingen, Switzerland. The HSI was 
acquired by APEX (Schaepman et al., 2015) with GSD ≈ 3 m on 12/07/2013. It has 284 bands covering the range 
0.4-2.4 𝜇m. The MSI was acquired by a Leica ADS80 with GSD ≈ 0.5m on 27/07/2013. It has 4 spectral bands 
(RGB and NIR). ADS80 has very steep, almost perfectly rectangular spectral responses (Cramer, 2011). The two 
sensor image strips and their overlap are shown in Figure 3. Two regions (see Figure 3, blue and red rectangles) 
were used for testing. The blue rectangle is 876x870 MSI pixels and the red rectangle 1074x1590 MSI pixels. The 
HSI and MSI were co-registered using mutual information (Lanaras et al., 2014). HSI and MSI images were 
spectrally and spatially degraded respectively and the co-registration was done on both test regions independently. 
Only two global translations for each band were estimated. It was observed that the four bands were not perfectly 
co-registered with each other, implying mis-registration of the spectral bands of ADS80 and/or (most probably) the 
APEX ones. However, finally a common translation was used for all MSI image bands as an average of the 
individual band translations and these were applied to the ADS80 data for each test region. 

 
 
Figure 3.  APEX (left top) and ADS80 (left bottom) data strips with the two colour rectangles showing the test 

regions, and on the right the zoomed blue rectangle from ADS80 (top) and APEX (bottom). 



 

The second dataset made use of the close-range CAVE image database (Yasuma et al., 2008). It includes many 
scenes with a large variety of colours and materials. The scenes were imaged in 31 hyperspectral bands in the range 
of 400-700 nm in 10nm increments using a liquid crystal tunable colour filter and also in RGB, whereby both HSI 
(called multispectral in the respective documentation) and RGB had the same spatial resolution. It is not clear how 
the delivered RGB images are generated. They could be real or synthetic, RGB or HDR RGB (HDR = High 
Dynamic Range). To the best of our knowledge, the RGB images are simulated, ground truth images, generated 
using the theoretical spectral responses of the 7 colour filters of the GAP sensor the authors designed and the 31 
hyperspectral channels. They look spectrally very similar to the HDR RGB images of the GAP sensor. Since it was 
unknown how the RGB images were generated and whether there was a mis-registration with the HSI images, we 
also generated new RGB images, by using the HSI images and a spectral subsampling using as spectral response 
curves those of a typical commercial camera, the Nikon D7000. We call these two RGB images as original and new 
RGB CAVE data. We use the original RGB for the estimation of the relative spectral sensor response, and the new 
RGB for the relative spatial sensor response. 
 
The third dataset came from the EO-1 satellite (see details at https://eoportal.org/web/eoportal/satellite-
missions/e/eo-1). The test area (1100 x 190 pixels) is along the river Rhine, close to the French city of Strasbourg. 
Images were acquired on July 18th 2016. MSI comes from the ALI sensor (9 bands, covering the spectral range 
433-2350 nm) with a 30m GSD and HSI from the Hyperion sensor with 198 useful bands (out of the 220, some 
bands did not contain any useful information), covering the spectral range 400-2500 nm with 10nm bandwidth and 
also 30m GSD. The two images were co-registered to less than a pixel, using the average translation derived from 
many match points using SIFT. For this dataset only the relative spectral response is estimated, because MSI and 
HSI have the same spatial resolution. 
 
Image data in grey values (8- to 16-bit) were linearly transformed to the range 0-1. 
 
4.2 Results and Discussion 
 
The spatial response estimation was evaluated at the two test regions of the aerial images (Figure 3). Window 
widths with k = 4,5,6 were semi-empirically chosen (note that the spatial resolution difference between HSI and 
MSI was about 6) and showed the best numerical stability (in the first iteration, when G = Iw). Figure 4 shows the 
computed 1D and 2D blur kernels for the blue ADS80 band and k = 4. Table 1 shows the residual mis-registration 
estimated for various bands and k values. The estimated mis-registrations are up to ≈ 2.5 MSI pixels (≈ 0.4 HSI 
pixels), implying that the co-registration was not ideal (we believe that a good co-registration should not exceed 
errors of about 0.2-0.3 HSI pixels). The errors are quite stable for different k but vary significantly from band to 
band, which means that for one sensor (most probably APEX) the individual sensor bands have remaining co-
registration errors. 
 

 
 
Figure 4.  Estimated relative spatial response for the blue band of ADS80 for k = 4. 1D kernels in colour, 2D kernel 

in grey. The pixels values at left and bottom are in MSI pixels. Note that the pixels of the 1D and 2D 
kernels as they appear in the figure actually often consist of multiple pixels. 
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Table 1.  Mis-registration in pixels (in the MSI resolution) between HSI and MSI per image band of the aerial 
ADS80 and APEX images, for various k values. 

 
 X-coordinate Y-coordinate 
k value 4 5 6 4 5 6 
Blue -0.5 -0.4 -0.4 0.7 0.6 0.6 
Green 0.6 0.6 0.7 1.0 1.1 1.0 
Red 0.0 0.1 0.1 1.2 1.2 1.1 
NIR -2.3 -2.5 -2.6 1.9 1.9 1.9 

 
In order to evaluate our method with known ground truth we used all CAVE HSI database images and the new 
RGB (MSI) images. Each HSI image was blurred with a 11 x 11 Gaussian kernel, where an x/y mis-registration of 
respectively 1.7/0.8 pixels was introduced (thus an interpolation was performed). The images were then 
downsampled with a local average filter by a factor 6, the same resolution difference as the aerial images. This new 
data were used as HSI images. MSI and HSI were also degraded by Gaussian noise of SNR = 30 dB. Table 2 shows 
that the estimated offsets of the blur kernel are almost identical to the introduced mis-registration errors and that the 
k value, as long as it is quite correct (big enough), has practically no influence. The differences between the bands 
are minimal. 
 
Table 2.  Mis-registration in pixels (in the MSI resolution) between the HSI and MSI (simulated data, using the 

new RGB) of the CAVE database for various spectral bands and k values. 
 

 X-coordinate Y-coordinate 
k value 4 5 6 4 5 6 
Blue -1.6 -1.6 -1.6 0.9 0.9 0.9 
Green -1.6 -1.6 -1.6 0.8 0.8 0.8 
Red -1.6 -1.6 -1.6 0.8 0.8 0.8 

 

   
(a) ADS80 spectral response.  (b) Regularizer λi for computing (a).    (c) CAVE sensor spectral response. 

 
Figure 5. (a) Approximate specifications (dotted lines) and final estimates (solid lines) of the relative spectral 

response. (b) For the aerial data: influence of the regularizer ||Dri|| as a function of its weight λi. We 
chose flat regions between the saturated extremes, to ensure stable behaviour. (c) The estimated spectral 
response of the original RGB CAVE sensor (solid line). The spectral response of Nikon D7000 (taken 
from manufacturer specifications), which is assumed to be similar to the one used in the original RGB 
CAVE data (dotted line). The relative spectral response in (a) and (c) is unitless and is estimated using 
the best fit between each MSI band and the HSI bands used to reconstruct it.  

 
The results of the spectral response estimation for the airborne and CAVE sensors are shown in Figure 5. In Figure 
5b, we plot the influence of the regularization term ||Dri|| against its weight λi. One can clearly see flat areas for too 
low values of λi, where the solution is not affected at all, and for very high values, where oversmoothing occurs. In 
between, there are regions where the curves are flat, meaning that the balance between ||Dri|| and the data, and thus 
also the solution, is rather stable. We found empirically that selecting λi in flat areas (e.g. in Figure 5(b) and the red 
curve at λi 10-1) yields plausible spectral responses. The selection of λi was manual for each band, whereby its value 
also depends on the selection of the l norm (1 or 2). For the aerial data we use the l1 norm (due to the ADS80 steep 
and rectangular spectral characteristics), for the CAVE data the l2 norm (due to the smoother spectral response 
curves). For the CAVE dataset, since not every image contains materials of all colours, we solve for a single 
spectral response over all images. For this data we do not restrict the solution to a part of the spectral range (so, no 
𝐵 was used), and allow strong regularization with λ = 103. The results are plotted in Figure 5(c) with a solid line, 
while the dotted line corresponds to the spectral response of a Nikon D7000 camera. Although it is unknown how 
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the RGB images of the CAVE dataset are generated, we assume that this was done by a sensor (maybe synthetic) 
with a spectral response similar to that of the Nikon D7000. Figure 6 shows the relative spectral response results for 
the EO-1 ALI and Hyperion sensors. In the estimation, the l1 norm was used. 

 
Figure 6. Solid line: Estimated spectral responses of the 9 spectral bands of ALI. Dotted line: The spectral 

responses according to the manufacturer.  
 
In Figure 7 the residuals for one sub-region of the aerial dataset are shown, i.e. the differences between the 
spectrally downsampled HSI and the spatially downsampled MSI band 3 (red). The distribution of the residuals is 
plausible: the right part of the stadium tartan is shadowed in the HSI due to differences in image acquisition time. 
There are also some large residuals on buildings, which we attribute to differences in viewing angle and possibly 
different shadows due to multitemporal data acquisition. Figure 8 shows similar information for the CAVE dataset. 
We do not have an explanation for the high residuals on the lower right (background of the painting) of this CAVE 
image. Figure 9 shows the results for the EO-1 sensors ALI and Hyperion. The results are very good and this can 
certainly be also attributed to the fact that MSI and HSI have the same spatial resolution, are acquired 
simultaneously and from practically the same viewing angle, cover almost the same electromagnetic spectrum 
region and the image scale is small (thus small differences between HSI and MSI are negligible). 
 

 
 
Figure 7.  Residuals of the spectral response between the spatially subsampled MSI and the spectrally subsampled 

HSI for band 3 (red), measured in absolute differences between intensities in the range [0 - 1]. 
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Figure 8.  Original CAVE RGB (left), spectrally subsampled HSI (middle), residuals of the spectral response 

measured in absolute differences between intensities in the range [0 - 1] (right). 
 

 
Figure 9. Top: Bands MS-1´, MS-2 and MS-3 (blue, green, red) of ALI. Middle: Estimated spectral subsampling of 

Hyperion (here the bands corresponding to RGB are shown). Bottom: residuals in the MS-2 band (green) 
of the spectral response measured in absolute differences between intensities in the range [0 - 1]. Note 
that the colour in the legend scale is different than in the figures above. Co-registration is visually judged 
(through subtracting ALI and Hyperion bands) to be sufficient and the model fits well to the data 
(residuals are small). 

 
5. CONCLUSIONS 
 
We have investigated the estimation of relative sensor characteristics between MSI and HSI, in the context of 
hyperspectral super-resolution for various datasets. Our main message is that, also under real-world imaging 
conditions, it appears possible to compute the spatial and spectral relative relations in a data-driven manner. We 
found that enforcing non-negativity for the spectral and spatial sensor response functions is important and stabilizes 
the estimation. Also important is to set the search window for the spatial response conservatively, to ensure it is 
larger than the actual blur. The estimation of the spectral response is a harder problem that needs to be strongly 
constrained to obtain plausible results. In particular, we find that prior knowledge about the shape of the response 
curves (steep rectangular vs. ramp-like flanks) is valuable and can be introduced by using an appropriate norm. 
While the results are encouraging, further work is needed to address situations with more image noise or multi-
temporal differences between HSI and MSI. Moreover, the residuals of the data-driven estimation make it possible 
to identify regions that do not comply with the estimation model used here and would cause errors for a subsequent 
hyperspectral super-resolution, facilitating their elimination from the estimation. 
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