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ABSTRACT

In this study, the authors propose to use two fast machine learning algorithms, i.e., Random Forest (RF) and

Extreme Learning Machine (ELM), to classify large sized hyperspectral imagery. RF and ELM are based on

different principles. The former one is the ensemble of decision trees (DT), which are trained with the bootstrap

samples from the training set. The latter one is a feed forward neural network with a single layer of hidden

nodes, where the weights connecting inputs to hidden nodes are randomly assigned and never updated. The

two classifiers are applied to the hyperspectral image taken by Headwall’s Hyperspec-VNIR-C imaging sensor

over Chikusei, Ibaraki, Japan, on July 29, 2014, and compared with those from SVMs in terms of accuracy and

computation time. Experimental results show that the global performances of the two proposed classifiers and

SVMs are very similar, and the overall accuracies are over 90%. However, the computational cost of SVMs is

much higher than those of RF and ELM. Besides, the performance of ELM can be further improved by increasing

the number of hidden nodes.
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1 INTRODUCTION

Hyperspectral imaging (HSI) gains increasing interest in the remote sensing community since this technique

allows us to obtain the images easily with detailed spectral and spatial information, which can provide a high

discrimination capacity among different land cover classes (Chang [2003, 2007]). However, an increasing number

of spectral bands results in decreasing the classification accuracy. This is well-known the Hughes phenomenon

(also referred to as the curse of dimensionality) (Hughes [1968]). Support vector machines (SVMs) is a popular

and successful algorithm for alleviating this phenomenon (Camps-Valls and Bruzzone [2005]; Melgani and Bruz-

zone [2004]; Vapnik [1995]). However, the large size of hyperspectral imagery often limits the possible use of

SVMs, due to the difficulty of computation complexity and the selection of kernels and parameters. Thus, the

alternative methods both considering computation complexity and performance, are required. In this presented

work, the performance of two fast machine learning techniques, namely random forests (RF) (Breiman [2001])

and extreme learning machine (ELM) (Huang et al. [2004, 2006]), is investigated. More specifically, RF is a

decision tree ensemble classifier, which is trained with the bootstrap samples from the training set and use a

randomly selected subset of features to perform split in each node. ELM is a feed forward neural network with

a single layer of hidden nodes by random selecting the weights in the connection between the input and hidden
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Figure 1. (a) Three-band color composite of the Chikusei image. (b) Ground truth. (c) Legend of classes.

nodes. The results of RF and ELM are compared with those from SVMs in terms of accuracy and computation

time.

2 Data set

The airborne hyperspectral dataset was taken by Headwall’s Hyperspec-VNIR-C imaging sensor over Chikusei,

Ibaraki, Japan, on July 29, 2014 between the times 9:56 to 10:53 UTC+9 (Yokoya and Iwasaki [2016]). The

Hyperspec sensor recorded 512 bands in the spectral range from 363 to 1018 nm. Spectral binning was performed

and the number of bands was reduced to 128 to increase the signal-to-noise ratio. The average height of the

sensor above ground was approximately 900 m and a GSD was 2.5 m after geometric correction. The scene

contains the large size of 2517 × 2335 pixels mainly including agricultural and urban areas in Chikusei. The

entire dataset was composed of 13 flightlines, which were approximately parallel to the north-south direction

and overlapped by approximately 35 % of each swath to reduce BRDF effects in the mosaic data. Atmospheric

correction and BRDF correction were performed on each flightline image using the ATCOR-4 program, version

6.3. All the flightlines were mosaicked based on smoothly weighted averaging in overlapped areas so that edges

of flightlines can be seamless. A Canon EOS 5D Mark II was also mounted on the same platform and high-

resolution color images were sequentially acquired together with the hyperspectral data. The ground truth of

19 classes was collected via a field survey and visual inspection using the high-resolution color images. The 19

classes comprise water, three types of bare soil, seven types of vegetation, and eight types of man-made objects

as shown in Table 2. Figure 1 (a) and (b) shows the three-band color composite image and the ground truth of

the given hyperspectral data. The ground truthed dataset has been made available to the scientific community ∗.

∗http://park.itc.u-tokyo.ac.jp/sal/hyperdata/.



Table 1. Class name and number of samples for training and test.

No. Name Train Test

1 Water 20 2835

2 Bare soil (school) 20 2849

3 Bare soil (park) 20 276

4 Bare soil (farmland) 20 4842

5 Natural plants 20 4287

6 Weeds in farmland 20 1098

7 Forest 20 20506

8 Grass 20 6505

9 Rice field (grown) 20 13359

10 Rice field (first stage) 20 1258

11 Row crops 20 5951

12 Plastic house 20 2183

13 Manmade (non-dark) 20 1210

14 Manmade (dark) 20 7654

15 Manmade (blue) 20 421

16 Manmade (red) 20 212

17 Manmade grass 20 1030

18 Asphalt 20 791

19 Paved ground 20 135

3 RF and ELM

RF is an ensemble of T decision trees. During the testing stage, a class probability distribution pt(yj |xj) for a

given sample xj is obtained by each decision tree and the final class label y∗j is calculated by:

y∗j = arg max
yj

1

T

T∑
t=1

pt(yj |xj) (1)

During the training stage, all the trees are trained independently from each other with training set {(xi, yi)}ni=1,

where n is the number of training samples. For each decision tree, the quality of a given splitting function Φ is

defined as

I(Φ) =
|L|

|L|+ |R|
H(L) +

|R|
|L|+ |R|

H(R) (2)

where, L and R means the left and right node of a decision tree. H(·) measures the purity a set of training

samples in terms of class labels and also calculated by using the Gini index (Breiman [2001]). | · | is the size of

training samples.

The standard procedure of RF is to inject randomness at two points: random selection of training samples by

tree and randomization of features by a node, and then to find a good splitting function, by evaluation Equation

(2). After the splitting function is fixed, the tree is grown until some stopping criteria, such as a maximum tree

depth, is reached (Breiman [2001]). Then, RF is generated by aggregating the predictions of the T trees.



ELM is generalized single hidden layer feedforward neural networks (SLFNs). The output function is ex-

pressed as:

f(xi) =

δ∑
j=1

βjhj(xi) = h(xi)β (3)

where, β = [β1, β2, ..., βδ]
>

is the vectors of weights between the hidden layer of δ nodes and the output node

and h(xi) = [h1(xi), h2(xi), ..., hδ(xi)] is the vector of hidden layer of xi. Specifically, h(·) is the feature mapping

from the D-dimensional input space to the δ-dimensional hidden-layer feature space.

The standard SLFNs can approximate these n samples with zero error means that
∑
i

‖f(xi)− yi‖ = 0. Thus,

the n equations can be written compactly as:

Hβ = Y (4)

where, Y is the target matrix and H is the hidden-layer output matrix:

H =


h(x1)

...

h(xn)

 =


h1(x1) · · · hδ(x1)

...
...

...

h1(xn) · · · hδ(xn)

 (5)

The output weights in equation (4) are given by the following smallest norm least-squares solution (Huang et al.

[2006]):

β = H+Y (6)

where, H+ is the Moor-Penrose generalized inverse of the hidden layer output matrix H.

In ELM, a feature mapping H from input space to a higher dimensional space is needed. Previous studies

of (Huang and Chen [2007, 2008]) approved that almost all nonlinear piece-wise continuous functions can be used

as output functions of the hidden-nodes. The Sigmoid function is usually adopted as the nonlinear piece-wise

continuous function:

g(ω, b,xi) =
1

1 + exp (−(ω · xi + b))
(7)

where, {ωj , bj}δi=1 are randomly generated values that can define a continuous probability distribution (i.e.,∫
g = 1). Thus, h(xi) is defined based on the nonlinear piece-wise continuous function g(ωi, bi):

h(xi) = [g(ω1, b1,xi), ..., g(ωδ, bδ,xi)] (8)

The training and prediction steps of ELM are listed in Algorithm 1.

4 Experimental results

In this work, a small set of labeled samples (20 samples per class) is randomly selected from the reference data

as the training set. The rest of the pixels form the testing set. For RF, two parameters, i.e., the number of

trees and number of selected features split in each node, are empirically fixed. The values are set to 50 and

12, respectively. For ELM, the number of nodes in a hidden layer is set to 128. A free library for SVM, i.e.,

LibSVM with MATLAB implementation, is chosen for training the SVM classifier, which is used to compare RF



Algorithm 1 Extreme learning machine

Training phase

Input: {X,Y} = {(xi, yi)}ni=1: training samples, δ: the number of nodes in a hidden layer. g: the Sigmoid function .

Output: The output weight β.

1: Randomly select the {ω1, ..., ωδ} and {b1, ..., bδ}
2: For each training sample xi, calculate the output layer matrix: h(xi) = [g(ω1, b1,xi), ..., g(ωδ, bδ,xi)]

3: Calculate the output weight: β = H+Y

Prediction phase

Input: A new sample x∗. The output weight β. The sigmoid function g. {ω1, ..., ωδ} and {b1, ..., bδ}
Output: Class label of x∗.

1: Calculate the output layer matrix: h(x∗) = [g(ω1, b1,x
∗), ..., g(ωδ, bδ,x

∗)].

2: y∗ = h(x∗)β. Assign the number of column which gets the greatest value among the columns to the class label of x∗.

Table 2. Overall, average and class-specific accuracies obtained for RF, ELM and SVM classifiers

Classifier RF ELM SVM

OA 90.07 91.02 91.11

AA 92.46 91.96 92.67

κ 88.60 89.68 89.80

Class 1 97.70 96.57 93.04

Class 2 93.98 96.16 91.66

Class 3 87.97 100.00 100.00

Class 4 78.70 52.48 51.22

Class 5 97.62 97.62 98.22

Class 6 96.42 76.84 94.78

Class 7 86.68 97.44 95.04

Class 8 93.84 98.61 95.92

Class 9 94.17 98.55 98.34

Class 10 97.76 100.00 99.04

Class 11 81.35 89.97 66.78

Class 12 95.63 97.65 89.07

Class 13 88.92 94.08 94.35

Class 14 88.79 68.26 98.21

Class 15 99.27 100.00 100.00

Class 16 94.55 100.00 99.51

Class 17 94.80 98.73 99.71

Class 18 97.44 85.79 99.75

Class 19 91.20 98.40 96.12

Time (s) 41.78 42.14 118.32
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Figure 2. Classification maps of (a) RF, (b) ELM, and (c) SVMs.
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Figure 3. Sensitivity to the change of the number of nodes in a hidden layer (δ).



and ELM (Chang and Lin [2011]). A Gaussian RBF kernel is used, and the required parameters are selected by

a grid search using a three-fold cross validation.

Table 2 summarizes the overall, average and class-specific accuracies obtained for RF, ELM, and SVM

classifiers. From the table, we can see that the overall accuracies obtained for three classifiers are quite similar.

SVMs shows a slightly better performance. However, RF and ELM gain the best results for four and twelve

classes, respectively. The computational cost is compared in Table 2. Experimental results are all carried out

on a computer with Intel Xeon 2 CPUs, 3.2 GHz, and 16 GB of memory. It can be found that RF and ELM are

much more efficient than SVMs. For illustrative purposes, Figure 2 shows the obtained classification maps.

In Xia et al. [2016], we found that RF is robust to the number of features split in each node, and larger

ensemble size has non-significant influence while increasing the computation time. Effect of the number of nodes

in a hidden layer (δ) in ELM is depicted in Figure 3. When δ becomes larger, ELM tends to have better

performances. However, it leads to higher computation time.

5 Conclusion

In this work, we propose to use two fast learning methods, RF and ELM, for the classification of large size

hyperspectral data. Experimental results confirmed the effectiveness of ELM and RF when compared with SVMs.

Thus, both RF and ELM methods can be considered attractive for the classification of large size hyperspectral

data. In the future, we would like to investigate the potential use of parallel computing towards greater efficiency

on large size datasets.
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