
MULTI-SENSOR FUSION FOR COST-EFFECTIVE PRECISE 
VEHICLE POSITIONING 

 
Hojun Kim1 and Impyeong Lee2 

1Dept. of Geoinformatics, The Univ. of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul, Korea, 
Email: zzimss@uos.ac.kr 

2Dept. of Geoinformatics, The Univ. of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul, Korea, 
Email: iplee@uos.ac.kr 

 
KEY WORDS: Navigation, Positioning, Bundle Adjustment, Kalman Filter, Sensor Fusion 

 
ABSTRACT: As the advantage of safety and convenience, an autonomous car and ADAS are being actively 
researched. One of the main challenge of the systems is to precisely determine the position of the vehicle. To solve 
this problem, sensor fusion methods are mostly used in many recent studies. In this work, we design a workflow for a 
vehicle position estimation system based on a sensor fusion approach and evaluate the accuracy of the proposed 
algorithm. The algorithm uses in-vehicle sensors, GPS, image sensors and road characteristics information for 
position estimation. The proposed sensor fusion method determines the vehicle positions by the following procedures. 
First, a relative trajectory is calculated using in-vehicle sensors only. This process is called a dead reckoning step. 
Then, we perform a bundle adjustment algorithm to estimate the position and direction of the vehicle using images 
and the initial values derived from the previous step. Through this step, we can determine the vehicle position more 
precisely. The sensor fusion procedure is performed using an EKF. The EKF calculates vehicle positions whenever 
the sensory data are acquired from in-vehicle sensors, a GPS and a camera. If road characteristics information is 
acquired from other sensors, it also can be combined for accurate position estimation. For the experiment, we 
designed a sensory data acquisition system and installed it on a vehicle. We also installed a precise position 
measuring equipment to evaluate the proposed algorithm. The estimation is performed using in-vehicle sensor only 
method and the proposed sensor fusion method. The RMS errors of the estimated positions from the proposed method 
are about 1.6 m. This experimental results show nearly 90% improvement in accuracy compared with the results from 
the in-vehicle sensor only method. The algorithm may be used for applications requiring accurate driving route 
estimation such as autonomous car and ADAS. 
 
1.  INDTORUCTION 
 
For the reliable operation of autonomous vehicles, providing accurate current position is one of the important 
components. It is also an essential part for advanced driver assistance systems (ADAS), collision warning systems 
and autonomous lane change systems. Most of these systems are based on a Global Positioning System (GPS) to 
obtain the positioning data. However, the stability and accuracy of the GPS is not sufficient for the above applications. 
Therefore, it is necessary to use some other methods to compensate the weakness of GPS signals. There are many 
studies to overcome the limitation of GPS signals. The most common approach is using additional sensory 
information. 
 
Google employs many sensors such as cameras, radars, 3D LiDAR, GPS/INS/Encoder, even computer and others for 
self-driving cars. Other automobile manufacturers also focus on autonomous vehicles with high price and high 
performance sensors (Franke, 2013). Those companies already develop and operate their autonomous vehicles in a 
test area. However, in order to commercialize them, it can be a significant obstacle that the prices of sensors are too 
expensive. Therefore, there are several attempts to replace high-priced sensors using inexpensive sensors with a 
sensor fusion algorithm. To reduce error and overcome high price, some researchers combine GPS and in-vehicle 
sensors. Jo et al. proposed a vehicle localization algorithm using distributed vehicle state estimation. This study 
employed Interacting Multiple Model (IMM) filter for better accuracy (Jo, 2010). And another paper combine GPS 
and in-vehicle sensors using a Kalman filter (Jong, 2010). 
 
Another frequently used additional sensor is a camera. It retains a low price compared to other sensors but the results 
are promising. There are many studies related to visual odometry. The results seem to be helpful for estimating 
vehicle positioning. A research use a camera with landmark information (Mattern, 2010). It also use ground points, a 
digital map and in-vehicle sensors to localize the vehicle. Kim et al. (2011) use omnidirectional cameras, in-vehicle 
sensors and an odometer. These studies provided accurate results but the used sensors are still too expensive to 
commercialize and some studies only focused on limited conditions or specific applications. Map-based localization 
is also studied. Most approaches follow a principle of loop-closing in the Simultaneous Localization and Mapping 
(SLAM) area. A loop-closing technique is to mitigate localization errors by revisiting the place visited in the past and 



adjusting the accumulated errors in the meantime. In the same context, it is possible to precisely estimate positions 
and attitudes of a car by observing the previously mapped area. This can give constraints for localization, and relieve 
the accumulated errors. Another advantage of map-based approaches is that such a system is much less affected by 
the signal reception environment unlike GPS. 
 
In many map-based localization studies, various kinds of data are employed as map data. Digital Elevation Model 
(DEM) and 3D building layer from the Geographic Information System (GIS) were used to estimate positions and 
attitudes of a vehicle and constrain the reconstruction process (Larnaout, 2012). Furthermore, any kind of 
geo-referenced information can play the role of a map. Laftchiev et al. constructed a map using highly accurate IMU 
data to compensate pitch errors of data and IMU mounted on a vehicle (Laftchiev, 2015). A 3D LiDAR point cloud 
database is employed in vehicle localization (Yoneda, 2014). In this study, a scan feature quantity measure was 
proposed to effectively employ the point cloud map. Meanwhile, geo-referenced image databases also can be used. 
Some of them provide semantic images such as landmarks and traffic signs. Qu et al. used traffic sign images as 
ground control information for a bundle adjustment process (Qu, 2015). Others provide a geo-referenced image 
stream like Google Street View. There has been some research which performed vehicle localization using topologic 
and metric image sequences and road network to overcome the ambiguity of dead reckoning (Badino, 2011). 
 
In this paper, a car position estimation algorithm using GPS, in-vehicle sensors and georeferenced images is proposed 
for precise car navigation. The algorithm is composed of three main processes: dead reckoning, image georeferencing 
and localization. To estimate an accurate result, the in-vehicle sensors, GPS and image information are used. For 
combining this sensor information, the Extended Kalman Filter (EKF) is employed. As a result of the proposed 
algorithm, accurate vehicle position and driving direction is provided. The following section describes our vehicle 
position estimation system. Then, experimental results are described in section 3. Finally, section 4 concludes this 
paper. 
 
2.  FRAMEWORK 
 
Owing to its low price and good accuracy, the GPS is an essential part of car navigation systems. But the GPS is not 
suitable for autonomous vehicles because of weakness such as multipath or signal outage. Therefore, this paper 
proposes a vehicle position estimation system based on a vision-based localization approach. This system can 
estimate the vehicle position and driving direction more precisely using a sensor fusion method. The structure of this 
system can also easily add more sensor information related to car position such as traffic lane information. 
 

 
Figure 1. Framework of the proposed car navigation system 

 
Figure 1 shows the overall process of a vision-based car position estimation system. The in-vehicle sensors provide 
yaw rate and velocity through the controller area network (CAN) bus. The GPS provides global position of the car. 
And position and direction of the vehicle can be derived from georeferenced images and frontal images through 
image matching and a bundle adjustment process. The EKF process combines individual sensory data and estimates 
final position and direction of the vehicle. Each of these steps is described in detail below. 
 
2.1 Dead Reckoning 
 
The basic component of the framework is the dead reckoning process, in which in-vehicle sensors are used to 
calculate the vehicle’s position. The dead reckoning process is to determine the current vehicle position from the 
previous position using moving direction and travel distance. 



 

Figure 2. Position and direction estimation model 

 
A vehicle position and driving direction can be derived using velocity and yaw rate from in-vehicle sensors, as shown 
in Figure 2. If we have knowledge of the position and measurement of the velocity and direction at the previous time 
(n-1), we can determine vehicle position and driving direction at the current time (n). Through this, the position and 
direction of the vehicle can be calculated as follows: 
 

∆  (1) 

∆ . (2) 

 
With these incremental equations, if the time interval is reasonably small, we can determine the position and attitude 
at each time epoch relative to the initial status. If we know at least the initial status in an absolute coordinate system, 
we can determine the status at all the time epochs in the same absolute system. 
 
2.2 Georeferenced Image Database 
 
Geo-referenced images can be defined as associated images with geographic information. The geographic 
information mainly associated with the geo-referenced image in this study is the position and attitude of a camera 
when a geo-referenced image is captured in the world coordinate system. Moreover, positions of the projected 
geographic features onto the geo-referenced image are also associated. They can play the role of a map which 
provides geographic information for the car navigation system. 
 

 

Figure 3. Concept of the car navigation using georeferenced image database 



The basic concept of the geo-referenced image database in this study is to correct the accumulated localization errors 
by detecting the precisely geo-referenced images and comparing the vehicle data to them. The geo-referenced images 
are sparsely distributed through the vehicle trajectory as in Figure 3. If the geo-referenced images are detected, the 
vehicle localization system compares frontal image sequences from a vehicle with corresponding geo-referenced 
images. Localization errors can then be derived from the results of such a comparison. The position and attitude of the 
car can then be precisely refined by using the estimated errors. 
 

 

Figure 4. Three data elements of the georeferenced image database 

 
In this research, the geo-referenced image mainly contains three data elements as in Figure 4. Each geo-referenced 
image has its camera position and attitude at its capture time. The second element is the 3D ground coordinates of the 
projected subjects onto each geo-referenced image. The two aforementioned elements are precisely determined in 
advance of vehicle driving. The last is a set of candidate image points (keypoints) and their descriptors which describe 
pixel intensity near each image point. They are extracted from the geo-referenced image, and they are essential to 
compare images. The left part of Figure 1 shows how the geo-referenced image database is employed in the vehicle 
localization system. Whenever a frame of frontal image sequences is captured, the system queries the corresponding 
geo-referenced image. If the system returns a positive answer to the query, the searched geo-referenced image is used 
as an input datum with frontal image sequences for image matching process. The image matching process is to extract 
image feature correspondences between input data. Previously extracted keypoints and their descriptors from the 
geo-referenced images participate in the image matching process. Bundle adjustment is then performed with the 
results of image matching. In this step, the camera position and attitude, and 3D ground coordinates involved with the 
geo-referenced image can give constraints for localization. This helps precisely estimate the positions and attitudes of 
a car and correct the accumulated localization errors. 
 
2.3 Localization Using a Kalman Filter 
 
At the localization step, an EKF is used to estimate the vehicle position and orientation. GPS data, in-vehicle sensors 
and georeferencing results are combined to get improved estimation results. A process for the EKF prediction step 
(time update) is given by 
 

 

. (3) 

 

and the update step (measurement update) is given by 
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The vehicle position (x, y, z) and driving direction (θ) are estimated by integrating sensory data. According to (1) and 
(2), which are derived from the dead reckoning step, the state is calculated as follows: 
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At the measurement step, the filter computes the Kalman gain value and state and covariance values. In accordance 
with the measured sensor type, three individual measurement models are designed. The measurement model for 
in-vehicle sensors is as follows: 
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Another measurement model for GPS data is calculated as 
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and the measurement model for georeferencing results is calculated as follows: 
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3.  EXPERIMENTAL RESULT 
 
3.1 Test System and Data 
 
We construct a data acquisition system to verify the performance of the proposed algorithm. The system can acquire 
in-vehicle sensors, GPS data and image data. Reference data for accuracy evaluation are also acquired at the same 
time. The reference vehicle position was obtained from POS-LV 420, a commercial positioning solution for 
land-based vehicles. The accuracy of the reference equipment is summarized in Table 1 (Applanix, 2015). Figure 5 
shows the data acquisition system that contains a front view camera, GPS, in-vehicle sensors and the reference data 
acquisition system. Inside of the car, we installed a laptop for collecting and monitoring the sensory data in real time. 



Table 1. Accuracy of the referenced equipment 

 Parameters 
Post 

processing
RTK DGPS 

With GPS 

X, Y [m] 0.020 0.035 0.300 

Z [m] 0.050 0.050 0.050 

Roll, Pitch[°] 0.015 0.015 0.015 

Heading[°] 0.020 0.020 0.020 

GPS Outage 
(60 seconds) 

X, Y [m] 0.120 0.0340 0.450 

Z [m] 0.100 0.270 0.560 

Roll, Pitch[°] 0.020 0.020 0.020 

Heading[°] 0.020 0.030 0.030 
 

 

Figure 5. The data acquisition system 

The data were acquired near the University of Seoul, Korea. Figure 6 shows the test site and trajectory. It took around 
510 seconds and the distance was about 1.7 km and the start point and the end point were almost the same. During the 
driving, in-vehicle sensor data, images and reference data are acquired. For implementing the proposed algorithm, the 
reference image database and georeferencing result of driving images are required. In this test, 250 images were used. 
 

 

Figure 6. The test site and trajectory (a red line) 



3.2 Estimation Results 
 
To verify the accuracy, we define the reference data as the true values and compared them with the results of the 
in-vehicle sensor only method and sensor fusion method. We assumed that GPS signal outage occurred in the entire 
area. The estimated trajectories are shown in Figure 7. It shows the reference trajectory (the black solid line), the 
in-vehicle sensor only trajectory (the red dashed line) and the proposed sensor fusion method trajectory (the blue 
dotted line). The proposed method is much closer than in-vehicle sensor only method. Figure 8 shows the distance 
difference comparing to the reference trajectory. The distance difference from the in-vehicle sensor only method (the 
red solid line) has continuously high error. In contrast, the distance difference from the sensor fusion method are 
going down when the georeferenced image data are obtained. Table 2 indicates the position estimation errors. The 
RMS (root-mean-square) errors of the proposed sensor fusion method is about 90% lower than the in-vehicle sensors 
only method. 
 

 

Figure 7. Estimated trajectory 

 

 

Figure 8. Comparison of position difference 

 



Table 2. Errors of position estimation 

Unit 
[meter] 

In-vehicle Sensors Sensor Combining 

X Y Distance X Y Distance 

Mean 3.72 -6.73 16.28 -0.09 0.34 1.31 

STD 7.78 15.22 9.25 1.02 1.24 0.98 

RMS 8.61 16.62 18.71 1.02 1.28 1.64 

Min -9.59 -32.16 0.42 -4.60 -3.50 0.09 

Max 14.50 21.18 33.38 2.91 7.10 8.46 
 
4.  CONCLUSIONS 
 
In this paper, we proposed a sensor fusion system for vehicle position estimation. This system combines GPS, 
in-vehicle sensors and image data for accuracy improvement. An EKF model is adopted for sensor fusion. To verify 
the proposed method, we constructed a data acquisition and processing system. This system can collect in-vehicle 
sensors, GPS and image data. In addition, reference data are also obtained and treated as true values. The estimation 
accuracy of the proposed method is 90% lower than in-vehicle sensor only method even without GPS signals. In 
future work, we plan to test more data and improve the vehicle positioning accuracy. 
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