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ABSTRACT: Wetlands were mapped by employing the Random Trees (RT) classifier on a high resolution 

orthorectified digital aerial photograph (orthophoto) and LiDAR data of a 50 sq. km area of Toledo, Cebu, 

Philippines. The rule sets for wetland classification are developed in the eCognition Developer software. Two cases 

were investigated, namely; wetland extraction using (a) orthophoto and LiDAR data, and (b) LiDAR data only. The 

obtained producer accuracy for wetland extraction is 97% for both cases, while 91% and 81% user accuracies were 

obtained for cases (a) and (b), respectively. The overall Kappa values for classifying wetlands and non-wetlands in 

cases (a) and (b) are 0.89 and 0.78, correspondingly, indicating a reliable classification process. There are 600 

wetlands extracted from (a) and 893 from (b). Only 23.5% (141) of the extracted wetlands in (a) and 17.3% (155) in 

(b) are actual wetlands, yielding to a percent difference of 9.9%.  

 

 

1. INTRODUCTION 

 

Both natural and human-made wetlands are significant and beneficial to the environment and society. According to 

Ramsar convention (Ramsar 2013), wetlands are cradles of biological diversity. They perform vital functions such as 

water storage, flood mitigation, and stabilization of local climate conditions. Economically, they are valuable for they 

supply water in fisheries and agriculture (maintaining water tables). 

 

The Philippines has various wetlands ranging from lakes, rivers, ponds, inland and coastal marshes and swamps, 

estuaries, and mangrove swamps. Despite this diversity, very limited information about the wetlands can be extracted 

compared to forest and marine ecosystem, for only few studies have been undertaken (DENR-PAWB, 2005). In terms 

of their protection, there are many conflicting laws with overlaps in jurisdiction that cause confusion for many 

enforcement agencies. Thus, wetland degradation in terms of biodiversity loss continues to exist, directly affecting 

rural communities and indigenous people. Through the Philippine Biodiversity Conservation Priority-setting Program 

(PBCPP), which is implemented by the Protected Areas and Wildlife Bureau-Department of Environment and Natural 

Resources (PAWB-DENR), the Biodiversity Conservation Program of the University of the Philippines’ Center for 

Integrative and Development Studies, and Conservation International-Philippines, priority wetland areas were 

identified for restoration, protection, and maintenance. (DENR-PAWB, 2005) 

 

Wetlands occur across the range of climatic and landscape variation. An updated inventory of wetlands with accurate 

boundaries is essential; it would provide information necessary for decision making in terms of their protection, 

conservation, and restoration. 

 

Using remote sensing data and techniques is a fast and effective method to extract wetland boundaries (Rampi et al., 

2014, Islam et al., 2008, Sharma et al., 2012). There are two approaches to using remotely sensed data: traditional 

pixel-based methods, and the object-based approach. The former approach usually results in low accuracy estimates 

because of the existence of mixed-pixels. Though some research integrates high resolution optical and elevation data 

to eliminate the mixed-pixels, the limitation is on the utilized (low to medium) spatial resolution data (Baker et al., 

2006). In contrast, the object-based approach is quite promising because it provides high accuracy estimates using 

high resolution data (Myint et al., 2011, Rampi et al., 2014). Mixed-pixel problems are eliminated, for it deals with 

homogeneous image objects - generated from image segmentation that uses pixel-based features. Furthermore, the 

approach has the ability to include contextual information, human knowledge, and experience to interpret the objects 

of interest (Rampi et al., 2014). 

 

In this study, the latter approach is employed on a high resolution orthorectified digital aerial photograph and LiDAR 

data to extract wetlands. In addition, two cases are investigated, namely: wetland extraction using (a) orthophoto and 

LiDAR data, and (b) LiDAR data only. The supervised learning method employed in wetland feature extraction is a 



Random Trees/Forests (RT) learning algorithm. There are a few comprehensive empirical studies comparing the 

learning algorithms such as using performance criteria to evaluate each learning method (Caruana and Niculescu-

Mizil, 2006). According to the group of Caruana, RT ranked as second best learning algorithm. In addition, it also 

ranked second best in classification accuracy using an object-oriented approach (Li et al., 2014). It is also one of the 

algorithms that has the capacity to deal with contaminated information in low-quality training sets. 

 

 

2. METHODOLOGY 

 

The wetlands are mapped and automatically classified by utilizing Object-Based Image Analysis (OBIA) through the 

creation of rule sets in the eCognition Developer 9.0 64-bit software. A portion of Toledo with an area of 50 sq. km 

is used in this study as shown in Figure 2(a). Subsections in this section describe data preparation, and rule set creation 

and classification. 

 

2.1 Pre-processing: Data Preparation and Image Processing 

 

Prior to the wetland extraction process, derivatives or raster layers listed in Table 1 are prepared, where the italicized 

derivatives are to be computed using ArcMap of ArcGIS 10.2.2, and ENVI (Environment for Visualizing Images) 

softwares. 

 
Table 1. Derivatives used in Wetland Extraction via eCognition Developer. Italicized derivatives are to be computed. 

 

RASTER 

 

MEANING 

RGB Red, Green, and Blue bands; orthophoto  

DTM Digital Terrain Model 

DSM Digital Surface Model 

INT Intensity 

nDSM normalized Digital Surface Model 

SLP Slope of DTM (in radians) 

CURV Curvature of DTM 

CTI Compound Topographic Index 

GRVI Green Ratio Vegetation Index 

HSV Hue, Saturation, Value layers 

 

 

The nDSM, the difference between DSM and DTM, provides the height of each object. This is generated using the 

Raster Calculator tool in ArcMap. The SLP derivative, which contains the slope of the DTM, is created using the 

Slope tool in ArcMap. The Curvature raster layer which is merely the second derivative of the DTM surface is 

generated using the ArcMap Curvature tool. In this layer, we can distinguish depressed areas (with upward concavity) 

with defined boundaries. The CTI is created in ArcMap using the SLP and flow accumulation grid, fac (Arc Hydro 

Tools>Terrain Preprocessing>Flow Accumulation). It represents the potential distribution of water movement and 

accumulation across the landscape, and identifies the areas with sufficient wetness. It is computed using the 

expression 

 

           ln [
𝐹𝑎𝑐+1

tan 𝑆𝐿𝑃
]        ( 1) 

 

via Raster Calculator in ArcMap. The GRVI is generated in ENVI using Band Math tool by inputting the expression 

 

      
𝑓𝑙𝑜𝑎𝑡 (𝐺𝑟𝑒𝑒𝑛)−𝑓𝑙𝑜𝑎𝑡 ( 𝑅𝑒𝑑)

𝑓𝑙𝑜𝑎𝑡 (𝐺𝑟𝑒𝑒𝑛)+𝑓𝑙𝑜𝑎𝑡 ( 𝑅𝑒𝑑)
               ( 2) 

 

where Green and Red are bands in the RGB raster. This derivative is used to distinguish wetlands from upland classes. 

The HSV derivative is created using the Transform tool in ENVI (i.e. RGB to Hue, RGB to Saturation, and RGB to 

Value). The Hue in this derivative is used in distinguishing lands from water and other upland classes. 

 



The DTM, DSM, INT, CTI, SLP, and Curvature rasters are chosen because of the topographic information they 

contain, which is useful in differentiating wetlands from other classes. If the orthophoto is unavailable, the raster 

inputs will be reduced to the DTM, DSM, INT, nDSM, SLP, Curvature, and CTI, resulting to a different classification. 

 

2.2 Wetland Extraction: Rule Sets Creation and Classification 

 

Figure 1 shows the work flow in extracting wetlands via the RT classifier. 

Delineate No Data 

The first step is to delineate “no data” in the DTM via a multi-threshold segmentation algorithm with a minimum 

object size of 10. Pixels with a zero DTM value are assigned to the “no data” class, while the remaining pixels with 

nonzero DTM values are assigned as “unclassified”. 

 

Delineate Short and Tall Objects  

Then, the “unclassified” pixels are grouped into “short” and “tall” classes based on a multi-threshold segmentation 

algorithm applied on the nDSM derivative. “Short” objects have height ≤ 2m while the “tall” ones have height > 2m.  

 

Segmentation 

After separating “tall” from “short” objects, the “short” objects are segmented to delineate wetlands from non-

wetlands. The multi-resolution segmentation is employed on the Curvature, CTI, DTM, INT, and SLP derivatives 

with layer weights of 2 for Curvature and CTI, and 1 for the remaining layers. A scale parameter of 20, and 

homogeneity criterion of 0.3 for shape and 0.5 for compactness were used, the aforementioned parameters determined 

after several trial-and-error experiments.  

 

Stream Assignment 

After segmentation, the loaded stream line shapefile (as thematic layer) is used to assign the stream in the processed 

area by using “assign class by thematic layer” algorithm.  

 

Training 

A feature array is created that contains object features of training set* (for wetlands and non-wetlands) based on the 

statistical analysis on the layer values (mean and standard deviation), and Haralick texture features (GLCM 

homogeneity, entropy, and angular second moment).   

In this study, two cases are investigated: wetland extraction using (a) orthophoto and LiDAR data, and (b) LiDAR 

data only. Thus, two feature arrays are generated with the following settings: 

(a) Layer values. The layer features are computed from the mean and standard deviation of each derivative listed 

in Table 1.  

                                                 
* The number of training points in a training set for each class is 70% of the total selected points while the remaining 30% is for 

validation set. 

 

Delineate No Data 

Delineate Short and Tall 

Segmentation 

Training 

Classify 

Validate 

Refinement 

Stream Assignment 

Figure 1. Flow chart for wetland extraction. 



Haralick Texture. The textural features are from GLCM homogeneity, entropy, and angular second moment 

in all directions of Curvature, CTI, INT, GRVI, and nDSM layers.  

(b) Layer values. Similar to (a) except that RGB, GRVI, and HSV are excluded. 

Haralick Texture. Similar to (a) except that GRVI is eliminated.  

 

Then an RT classifier is trained based on the extracted object features from wetland and non-wetland training sets. 

Similarly, two RT classifiers are created and trained with respective feature arrays. Optimal parameters are used for 

the RT classifier which results in better classification. 

 

Classification 

The trained RT configuration is then applied to “short” objects only. Thus, the “short” objects are assigned as either 

wetland or non-wetland. 

 

Validation 

The classified wetlands and non-wetlands are validated internally by using the selected validation points. A confusion 

matrix is utilized to assess the accuracy in classifying wetlands and non-wetlands. 

 

Refinement 

The wetlands are then refined by employing the merge region algorithm to merge all the wetland segments. Then, the 

merged wetlands are exported to a shapefile and loaded into ArcMap. The wetlands with areas less than 50m2 are 

deleted, as well as the wetlands along the stream and in rice fields.   

 

 

3. RESULTS AND DISCUSSION 

 

Figures 2(b) and 2(c) show the extracted wetlands after applying the RT classifier on (a) orthophoto and LiDAR data, 

and (b) LiDAR data only, respectively. Table 2 shows a full error matrix, accuracy, and kappa estimates for wetland 

Figure 2. (a) Orthophoto (b) classified wetlands using orthophoto and LiDAR data 

(c) classified wetlands using LiDAR data. 

(a) 

(b) 

(c) 



and non-wetland classes. The obtained producer accuracy for wetland extraction is 97% for both cases, while 91% 

and 81% user accuracies were obtained for cases (a) and (b), respectively. The low user accuracy value from case (b) 

indicates the existence of numerous misclassified wetlands. Nevertheless, the overall Kappa values for classifying 

wetlands and non-wetlands in cases (a) and (b) are 0.89 and 0.78, respectively, indicating a reliable classification 

process. 

 
Table 2. Full error matrix with corresponding accuracy and Cohen's Kappa for both cases (a) and (b). 

 
 

In case (a), 600 wetlands are extracted while 893 in case (b) as seen in Table 3. It is evident in Figure 2 that more 

wetlands enclosed in the white box are classified in case (b) than in case (a). However, some of these extracted 

features are false positives. In case (a), a total of 460 wetlands are deleted in which 306 (51%) have areas less than 

50 sq. m. (considered as salt and pepper), and 154 (26%) are false positives; yielding a total of 140 (23%) actual 

wetlands. In case (b), 738 wetlands are deleted: 274 (31%) have areas less than 50 sq. m., and 464 (52%) are false 

positives, leaving 155 (17%) actual wetlands. The number of actual wetlands obtained from both cases have a percent 

difference of 9.9%, implying that they yield similar results. 

 

 
Table 3. Summary of extracted wetlands using RT classifier for each case. 

 

Case 

 

Extracted 

Wetlands 

 

Area less than 

50 sq.m. 

 

Misclassified 

 

Actual Wetlands 

(a) 600 306 154 140 

(b) 893 274 464 155 

 

  

 

4. CONCLUSION 

 

More objects are classified when using LiDAR data only than with the additional orthophoto. The addition of the 

RGB orthophoto layer results in a lower incidence of false positives.  

Case (a). ORTHOPHOTO AND LiDAR DATA Case (b). LiDAR DATA

A.1 Confusion Matrix B.1 Confusion Matrix

CLASS Wetland Nonwetland Total CLASS Wetland Nonwetland Total

Wetland 13577 1400 14977 Wetland 13627 3136 16763

Nonwetland 386 16185 16571 Nonwetland 336 14449 14785

Total 13963 17585 31548 Total 13963 17585 31548

Note: The indicated numbers are pixels, not object. Note: The indicated numbers are pixels, not object.

A.2 Accuracy B.2 Accuracy

Accuracy Wetland Nonwetland Accuracy Wetland Nonwetland

Producer 0.9724 0.9204 Producer 0.9759 0.8217

User 0.9065 0.9767 User 0.8129 0.9773

Overall Overall

A.3 Cohen's Kappa B.3 Cohen's Kappa

Kappa Wetland Nonwetland Kappa Wetland Nonwetland

Per Class 0.9474 0.8323 Per Class 0.9487 0.6644

Overall Overall

C
L
A
S
S
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A
T
IO
N

VALIDATION/REFERENCE

0.9434

0.8861

VALIDATION/REFERENCE

C
L
A
S
S
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A
T
IO
N

0.8899

0.7815



Orthophotos are costly and not always available. Despite this, high accuracy wetland extraction is possible using 

LiDAR data only. The overall accuracy of 89% and Kappa value of 0.78 indicate that the classification process is 

reliable. 

 

The study is limited to an area of Toledo City, Cebu, with primarily mountainous terrain. The parameters for 

segmentation and classification may need to be optimized for different terrain types (i.e., flood plains, urbanized 

areas, etc.).  
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