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ABSTRACT: Landslide hazards are common in Taiwan due to its mountainous topography and high number of 

earthquakes and typhoons experienced yearly. As a result it is essential to develop a method of landslide detection 

that is capable of landslide providing results with a reasonable level of accuracy, and may also be integrated into an 

early warning or monitoring system. Probabilistic methods such as Bayesian analysis have gained interest in recent 

times over more traditional deterministic approaches due to their greater flexibility and the more informative nature 

of any obtained results. In this study, we will use a stepwise semi-automatic Bayesian analysis approach for mapping 

landslides in Huaguoshan, Taiwan. Prior probability of landsliding will be obtained using an integrated analysis and 

used to detect landslides from a post-typhoon satellite image. This information will be used to detect and map rainfall 

induced shallow landslides in a post typhoon environment.  

 

 

1. INTRODUCTION 

 

 

Though the term conjures a very specific image in the minds of a layperson, a landslide refers to any type of movement 

of rock, soil and debris down a slope. Further confusion about the concept of a landslide arises largely due to 

Landslides have always been a significant part of the human landscape, and are well known for their ability to create 

significant damage to infrastructure as well as many losses of human lives. In recent times, increased levels of 

urbanization and climate change altering the natural environment. (Aleotti and Chowdhury, 1999) For these reasons, 

many attempts have been made over time to predict when a landslide will occur. However, the mechanics behind 

landslide triggers are not very well understood and are also not easily transferrable from one area to another due to 

the nature of the Earth’s topography. 

 

Landslide hazard mapping (also known as Landslide Hazard Zonation or LHZ) aims to process and rank the odds of 

a landslide occurring in a specific area. Landslide hazard mapping is a fairly broad area, with many approaches 

typically falling under one of five major subheadings; inventory based, heuristic approach, probabilistic assessment, 

deterministic approach and statistical analysis. (Guzzetti et al., 1997) Each method has its own strengths and 

weaknesses, but current research trends toward a statistical analysis due to its data driven nature and the vast 

improvements that have been made in Geographical Information Systems (GIS). This makes it easier to achieve 

effective manipulation of spatial data while drastically simplifying the data analysis process. Statistical methods 

general fall under two major categories: bivariate statistical analysis e.g. Weights of Evidence model, Weighted 

Overlay model or multivariate statistical analysis e.g.  Logistic Regression, Conditional Analysis methods.    

 

 

1.1 Bayesian Theory 

 

 

Bayesian theory is a mathematical framework for reasoning based on conditional probability. Using this theorem, we 

are able to calculate the probability of an event A happening given that a condition B is true. This can be expressed 

using the formula 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
  (1) 

 

Where P(A) is the prior probability of the hypothesis A, P(B) is the prior probability of the data B, P(A|B) is the 

posterior probability of A given B and P(B|A) is the posterior probability of B given A. In this paper, the Bayesian 



equation to find the probability of a landslide occurring given that a critical rainfall threshold is met is calculated 

using the equation   

 

𝑝(𝑆1|𝑣) =
𝑝(𝑣|𝑆2)𝑝(𝑆1)

𝑝(𝑣)
; (𝑂 ≤ 𝑝 ≤ 1)  (2) 

 

Where S1 represents the probability of the pixel containing a feature f (landslide free area, landslide area, source, 

runout), S2 represents a landslide related feature f present before the landslide event, v represents the landslide 

influencing factor (critical rainfall) and p represents the probability of landslide occurrence. (Mondini et al., 2012)  

 

1.2 Integrated Model 

 

 

To investigate the conditions needed for the creation of shallow rainfall triggered landslides, the critical rainfall model 

has seen significant usage since its creation. Because this model is a physically based one, it is theoretically easier to 

use the model in a wide variety of areas. (Montgomery and Dietrich., 1994) In reality, because these models require 

a high amount of specific topographic attributes for the area they are often difficult to use. This is due to attributes 

such as soil type and geomorphologic structure not only being scarce in nature due to lack of funding for collection, 

but also requiring high levels of technical expertise that many countries may not be able to afford. On the other hand, 

while statistical models such as logistic and multivariate regression give a better idea of the correlation between 

landslides and their respective instability factors, they do not account for temporal changes and their understanding 

of landslide processes are limited. (Ayalew and Yamagishi, 2005; Clerici et al., 2002) 

 

The integrated model aims to remedy the deficiencies of both approaches by combining a deterministic and statistic 

method. Topographic, soil and rainfall attributes are combined to estimate the probability of a landslide occurring in 

a specific area. While the integrated model is not capable of explaining the mechanical effects of higher rainfall 

intensity on landslide potential, it can estimate the probability that a landslide will occur through the use of Rainfall 

Intensity Difference (RID) and rainfall duration. (Chang, 2008) 

 

The critical rainfall model uses a logistic regression in the form 

 

𝑙𝑜𝑔𝑖𝑡(𝑦) = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑒  (3) 

 

 Where a is a constant, bi is the ith regression coefficient and e is an error term. This represents the natural logarithm 

of the odds 

 

 𝑙𝑜𝑔𝑖𝑡(𝑦) =  ln (
𝑝

1−𝑝
)  (4) 

 

Where p represents the probability of the occurrence y. Equation (4) is then rewritten as  

 

𝑝 =
exp (𝑎+𝑏1𝑥1+𝑏2𝑥2+⋯ )

1+exp (𝑎+𝑏1𝑥1+𝑏2𝑥2+⋯ )
 (5) 

 

 

2. METHODS AND MATERIAL 

 

 

2.1 Study Area 

 

 

The study area for this paper is located in southern Taiwan’s Huagoshan watershed. The study covers a region of 

116km2 and has elevation that ranges from 257m to 1673m. Slope of the study area ranges from 0° to 78° with an 

average slope of 26°. Average annual precipitation in the study area averages 2200mm and occurs mainly in May and 

October. The geology of the area consists of rocks from the Miocene and Holocene Alluvium from the Quaternary 

period. Alluvium, clay and limestone soils are also present in the area.   

 



 
 

Figure 1. Location of the Huagoshan Watershed    

 

2.2 Study Data 

 

 

A 10m pre-event DEM for this study was obtained from Taiwan’s Soil and Water Conservation Bureau and used to 

prepare maps showing terrain gradient and aspect. Shapefiles containing soil data e.g. soil conductivity, internal soil 

friction angle and soil bulk density were obtained and converted to raster format for use in the integrated model. 

These shapefiles were based on the 10m pre-event DEM for the study area. Daily rainfall data was obtained from the 

Central Weather Bureau (CWB) of Taiwan for 16 rain gauges located in the study area and the areas around it. All 

data from these rain gauges were standardized to contain only data for the month of August and used to calculate the 

daily and monthly rainfall total. A FORMOSAT-2 NDVI image of the surrounding area at a resolution of 8m was 

also used in the process.  

 



 
 

Figure 2. Data Used In the Study. A) Bulk Density, B) Soil Cohesion, C) Soil Conductivity, D) Internal Friction 

Angle, E) Rainfall Duration, F) Rainfall Intensity, G) Soil Depth 

 

 

2.3 Method 

 

 

2.3.1 Data Preprocessing 

 

Before using them in their respective models, all data was standardized to the TWD97 projected co-ordinate system. 

Raster data was then resampled to a 10m resolution as necessary before being cropped to the study area extent. All 

shapefiles were then converted to raster files. Finally, any holes or no data areas in the rasters were filled using a 5x5 

rectangular nearest neighbor function in raster calculator. 

 



2.3.2 Integrated Model 

 

The integrated model requires inputs of rainfall intensity, rainfall duration, soil conductivity, soil bulk density, soil 

cohesion, NDVI, soil internal friction angle and soil depth. Rainfall intensity and rainfall duration were calculated 

using Inverse Distance Weighted (IDW) interpolation of the rainfall totals obtained from 15 rain gauges in and around 

the study area. Due to unavailability of soil depth rasters for the study area, soil depth was assumed to be constant at 

1m throughout the study area. Soil conductivity, bulk density, internal frictional angle and cohesion rasters were 

obtained from shapefiles which contained the relevant information. 

 

2.3.3 Maximum Likelihood Classification 

 

A Maximum Likelihood Classification was performed on a post typhoon event FORMOSAT-2 image. The 

classification was trained in 6 regions of interest (ROI) with four areas not affected by slope failures and two which 

represented the spectral characteristics of landslides in the study area. The ROIs were selected through visual 

inspection and after the classification was performed a majority filter was applied to the post classification image to 

reduce any stray pixels. Finally, all classes in the majority filtered image were combined except the ones 

representative of the landslide. 

 

2.3.4 Normalization and Accuracy Assessment 

 

Finally, all resulting rasters were normalized on a scale of 0 to 1 using the equation  

 
DEM−MIN(DEM)

𝑀𝐴𝑋(𝐷𝐸𝑀)−𝑀𝐼𝑁(𝐷𝐸𝑀)
 (6) 

 

The accuracy of the integrated model performance was found using the modified success rate (MSR) (Huang and 

Kao, 2006). This uses the equation 

 

𝑀𝑆𝑅 = 0.5(𝑆𝑅𝑛𝑢𝑚𝑏𝑒𝑟  𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒𝑠) + 0.5(𝑆𝑅𝑐𝑒𝑙𝑙  𝑠𝑡𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎𝑠) (7) 

 

Where SRnumber represents the rate of successfully predicted landslides and SRcell represents the proportion of 

successfully predicted stable areas. The equal weighting of each components allows for the consideration of the 

predictability of landslide sites and stable areas. 

 

 

3. RESULTS & DISCUSSION 

 

3.1 Integrated Model 

 

Through experimentation, it was discovered that a critical rainfall co-efficient of 2 produced the best results. 5657 

landslides were discovered by the model with an AUC of 0.718 and at a 0.5 significance level the model had a MSR 

of 86.5%.  

 

 
 

Figure 3. Integrated Model Results. A) Critical Rainfall Map, B) RID Map, C) Probability Map 

 



The RID varies with rainfall intensity, with most stable values being located in the eastern sides of the map and 

decreasing eastward. The center of the map is completely stable, though some scattered areas of negative intensity 

exist in that region. On the probability map, a slice of high probability areas exists on the south western corner of the 

map. 

 

3.2 Maximum Likelihood Classification 

 

The results of the Maximum Likelihood Classification are shown in the figure below. 

 

 
 

 

Figure 4. Maximum Likelihood Classification and Confidence Raster 

 

A confidence raster was also produced. This raster gave the likelihood of a pixel being correctly predicted on a scale 

from a confidence level of or greater than 0.95 to a confidence level of 0. The majority of classified values fell in the 

confidence range of 0.5. 

 

Table 1. Confidence Raster Results 

 

Confidence Level Count 

0 4,839 

0.005 1,874 

0.01 6,481 

0.025 12,162 

0.05 26,810 

0.1 113,307 

0.25 251,915 

0.5 455,541 

0.75 299,987 

0.9 58,177 

0.95 21,633 

0.975 10,280 

0.99 2,714 

0.995 2,359 

 

Generally, the classification was able to determine the difference between the landslide source and runout fairly well. 

However, there tended to be misclassification of pixels representing areas such as the river channel and town areas 

with that of the landslide runout. This can be attributed to the high spectral similarity between these regions, making 

it difficult to near impossible to determine these areas unless done manually. Values that were identified as having a 

confidence level of 0 fell in areas that were either covered with clouds or were residential areas with roofs that 

possessed a similar spectral signature. Another potential issue is the relatively small and scattered size of landslides 

present in the area. Of the 6,440 landslides present in the Huagoshan basin, 6,149 possess a size that is smaller than 



one hectare. This could result in potential false positive identification of landslides as these landslides may exist in 

areas with mixed pixel types. 

 

3.3 Bayesian Model 

 

After the results for both the Integrated Model and the Maximum Likelihood Classifications were obtained, they were 

then used as inputs in the Bayesian model. These inputs were then classified on from probabilities ranging from 0.1 

– 1, where 0.1 represents 10% likelihood of landslide occurrence and 1 represents 100% likelihood of landslide 

occurrence.  

 

 
 

Figure 5. Bayesian Model Results 

 

The histogram for this map indicated that the majority of values fell in the 0.1 (10%) likelihood range. This 

corresponds to the fact that these areas are typically located along ridgelines or other regions that are unconditionally 

stable in nature. The 0.6 (60%) likelihood range contained the second highest number of values, with the 0.5 (50%) 

likelihood of landslide occurrence coming in third. No area in the map contained a probability of 1 (100%), and the 

highest value for potential landslide occurrence was 0.8 (80%). These values were concentrated in a small triangular 

area in the southwestern part of the map. This corresponds to the area on the probability maps created by the Integrated 

Model with the highest values. 

 

 

 
 

Figure 6. Histogram of Bayesian Output 

 



Compared to existing landslide inventory maps for the area, the model underrepresented the total landslides present 

in the area by 11%. One possible reason for this is potentially the inconsistency between actual values for input 

parameters such as soil depth or soil permeability and the estimated value used in the Integrated Model. Soil depth in 

a landslide prone area typically varies with each landslide activity and the steepness of the slope. Slope was also a 

factor that this model did not take into account. Studies by other authors have indicated slope gradient as having a 

strong relationship with landslide occurrence, especially in combination with rock bed type. However, these 

researchers did indication elevation as being a reasonable approximation in the absence of slope data. (Ayalew and 

Yamagishi, 2005; Wang, 2014; Tsou, 2010). Interestingly, the model did not correctly classify landslide runout areas 

which coincided with stream or channel areas. This discrepancy is perhaps due to the functionally identical elevations 

and soil depths found in these areas. It did for the most part identify the source areas located along the sides of these 

runout areas. 

 

 

5. CONCLUSION 

 

The primary aim of this paper is to develop a landslide classification method which allows for the detection of shallow 

rainfall induced landslides while compensating for the weaknesses found in traditional deterministic and probabilistic 

techniques. It also aims to use statistical analysis to develop a classification technique that could be considered 

‘heuristic’ in nature – mimicking the techniques that are often used by geomorphologists in map creation. (Mondini 

et al., 2013) This goal was partially achieved as the combined model was able to compensate for some of the 

weaknesses in the detection of landslides by Maximum Likelihood Classification – namely the identification of 

spectrally similar bare soil and landslide runout areas through its combination with the Integrated Model. However, 

this model still has some of the limitations present in traditional landslide models – namely the need for detailed 

geomorphological data such as soil conductivity and bulk density that may not be readily available in some regions. 

Despite this, is believed that with further refinement and some alteration this method will be one capable for use in 

the creation of landslide probability maps in other areas. 
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