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ABSTRACT: Understanding causal relationship between economic activities and emissions is important for framing
successful environmental policies. However temporally and spatially continuous ’air quality’ data is required to get
a detailed trend information for urban regions. Using nightlight data, which correlate well with economic activities,
and air quality species data observed from satellite, the authors have previously devised a scheme for classifying
regions. In this research the classification scheme is applied on a time series data to draw inferences about transition
in regional air quality due to human activities. Based on inferences from classification trends, relationship between
various economic activities (such as construction, manufacturing, vehicle population etc.) and air quality species
is explored and checked for causality using Granger’s test. The objective is to identify which industries correlate
well with air quality species and can also be statistically identified as a cause.The air quality species considered
are ANG (angstrom exponent), AOD (aerosol optical depth), NO2, SO2 Nightlight time series data is obtained by
intra-calibrating DN values from multiple-year DMSP-OLS sensors and inter-calibrating it with radiance values from
VIIRS-DNB sensor. The industries that are expected to result in nighttime lights and urban air pollution are then
checked for causality with air quality species using Granger causation test.

1 INTRODUCTION

1.1 Background

Understanding causal relationship between economic activities and emissions is important for framing successful
environmental policies. Therefore, the role of economic activities promoting anthropogenic pollutants needs to be
confirmed before implementing corrective policies. However to get a detailed trend information for urban regions,
temporally and spatially continuous data is required. Previously Fujikawa and Takeuchi (2013) used remote sensing
MODIS and OMI data to characterize air quality of multiple urban regions globally with regards to their gross domes-
tic product (GDP) where it was found that with increasing GDP of cities the air pollution levels first rose drastically
and then fell down gradually. This Environmental Kuznets Curve (EKC) type relationship has also been found for the
Indian case while studying relationship of environmental productivity and income (Managi and Jena, 2008) and car-
bon emissions and economic activity (Kanjilal and Ghosh, 2013). High correlations of nightlight with gross domestic
product (GDP) (0.88) and motor-vehicle count(0.91) have been reported at country level by Katayama and Takeuchi
(2014) on a global scale highlighting its utility in representing regions with socio-economic activities.

In recent years Indian cities have seen a worsening trend of air quality (Misra and Takeuchi, 2015). By considering
this information as per the EKC, a question arises if this is a result of robust economic growth in India. It therefore
becomes necessary to find which economic sectors correlate well with urban air quality. It is further necessary to find
if the economic sectors so identified are also the cause of poor urban air quality. As per United Nations urban regions
are defined in terms of administrative boundary, population size, economic function and built-up characteristics.
However in the present study urban regions are considered as regions that can be captured using night light.

1.2 Objective

The objective of this research is to identify those economic sectors whose annual GDP correlates well with urban air
quality and to probe the nature of causality for such relationships.

2 DATA AND METHODOLOGY

2.1 Datasets

This study used records from the year 2004 to 2014 from three types of datasets: air-quality, nighttime light and
macroeconomic domestic productivity.
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Figure 1: (a) Location of AERONET stations considered. India is shown is magenta color. (b) The states and union
territories in India

Air-quality datasets (AQ): The air-quality species considered were ANG, AOD, SO2 and NO2 (collectively re-
ferred to as AQ in henceforth). To study ANG and AOD levels, daily ‘MOD04L2’ Level-2 data at 10km res-
olution obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s EOS
Terra satellite was used. ‘Deep_Blue_Aerosol_Optical_Depth_ 550_Land’ dataset was used for AOD images and
‘Deep_Blue_Angstrom_ Exponent_Land’ dataset was used for ANG images. To study SO2 and NO2 column concen-
tration levels for June 2014, ‘OMSO2e’ and ‘OMNO2d’ Level-3 Ozone Monitoring Instrument (OMI) daily datasets
from NASA’s EOS Aura were used respectively. This data has a spatial resolution of approximately 25km. In
addition AOD data from 14 of the AERONET stations (shown in Figure 1a) , a global network of ground based sun-
photometers (Holben et al., 1998), in the Indian subcontinent having more than 280 days of measurement were used
to check the reliability of MODIS derived AOD estimates.

Nighttime Light (NL): For the years 2004 to 2013, annual stable nighttime light composites at approximately 2.7km
spatial resolution from the OLS (Operational Linescan System) sensor aboard DMSP (Defense Meteorological Satel-
lite Program) were used. For some years composites from multiple DMSP-OLS satellites are also available yet com-
posites only from satellites F16 and F18 were considered. This was done to avoid as much inter-calibration errors as
possible due to lack of on-board calibration system (Elvidge et al., 2009). Since the OLS dataset is publicly available
only until 2013, day-night band (DNB) product (Baugh et al., 2013) of Visible Infrared Imaging Radiometer Suite
(VIIRS) dataset for the years 2013 and 2014 was used. Its spatial resolution is approximately 0.75km. DNB provides
surface radiance values in contrast to 6-bit quantization of OLS, which is a digital number (DN) based product with
values ranging from 0 to 63. These datasets are provided by National Oceanic and Atmospheric Administration’s
(NOAA) National Geographic Data Center (NGDC).

Gross domestic product (GDP): For India, GDP information is publicly available (https://data.gov.in/ ) at adminis-
trative resolution of country, state (or province as in other countries) and districts. Country and state (numbering 28
except the state of Telangana) level data is available by sectoral composition of the GDP (Central Statistic Office,
2012) for years 2004-2014. The states are shown in Figure 1b. The overall GDP was only found available for 160
districts (out of the total 640 districts) for years 2004-2011. The sectoral composition structure is shown in Table1

2.2 Flowchart

Figure 2 lays down the flowchart of data processing and analysis performed to obtain results.



Table 1: Structural composition of GDP in India by economic sectors.

Ag & Allied (Primary) Industry (Secondary) Services (Tertiary)
Agriculture & Mining & quarrying Transport
Forestry & logging Registered Manufacturing Storage
Fishing Unregistered Manufacturing Communication

Construction Railways
Electricity, gas & Water supply Banking & Insurance

Real estate, ownership of dwellings & business services
Public Administration
Trade, hotels & restaurants
Other services

Figure 2: Flowchart of study outlining data sources, processing and analysis.

2.3 Data processing

2.3.1 Mean annual AQ composite

Each of the AQ species, i.e. ANG, AOD, SO2 and NO2 daily level retrievals were composited to mean annual images
since timescale of other datasets employed is also annual. Instead of simply averaging daily images to annual scale,
mean of 2%ile to 98%ile intensity values for each pixel was considered to remove effect of high outliers (due to
surface reflectance) and zero values (due to cloud mask).

AOD daily values from MODIS dataset (AODMOD) were assessed also for accuracy by comparing the daily data
with observations from AERONET (AODAER) ground stations. MODIS sensor is aboard Terra satellite whose revisit
times are daily at 1030 hours, therefore the pixel values were compared with mean of observations of AERONET data
collected between 0930 to 1130 hours. Since AERONET does not measure AOD at the same wavelength as MODIS
(=550nm), AERONET measurements were extrapolated from AOD measured at 500nm and 440nm to 550nm using
the relation (Liu et al., 2004):

αλ1−λ2 =−d lnτλ/d lnλ =− ln(τλ1/τλ2)/ ln(λ1/λ2) (1)

where τλ1 and τλ2 are AOD values at wavelengths λ1 and λ2 .

2.3.2 NL inter-calibration

OLS inter-calibration:In addition to the OLS dataset consisting of annual composites from different satellite sensors
(F16 and F18 satellites), the sensors suffer pixel saturation in urban regions and themselves undergo physical degra-
dation over a period of time. To overcome these deficiencies and ensure a continuous dataseries, the NL images were
inter-calibrated using the invariant region method (Wu et al., 2013) by taking the year 2006 as base year. The calibra-
tion technique follows a power law function DNc + 1 = a× (DNm + 1)b, where DNc is the grey value DN obtained
post-calibration, DNm is the grey value pre-calibration DN, and a and b are model coefficients as mentioned in the



paper by Wu et al. (2013).

OLS & DNB inter-calibration: Since OLS datasets are not available post year 2013, to enable continuity of NL
dataset until 2014, F182013 OLS image was calibrated with January 2013 BETA monthly DNB composite. Using
the conversion formula (Doll, 2008) first radiance (radDN) was calculated from DN :

radDN = (DN)3/2Watts/cm2/sr (2)

After resampling the DNB image to the resolution of OLS,lookup-table of mean radDNB for radDNB values for each
pixel coordinate was prepared. Due to the limitation of OLS sensor to measure only 64 levels, each level of DN had
multiple differing DNB physical radiance values (radDNB). For calibration, mean radDNB was linearly regressed with
corresponding radDN values. Linear regression is preferred since radiance from OLS and DNB represent the same
physical measurement yet due to oversaturation of pixels in OLS, fitting an exponential curve was also explored, as
discussed in later in Section 2.5.2.

2.4 Analysis

2.4.1 Trend of pixel classification by NL and AQ

Using nighttime light data, which correlate well with economic activities, and air quality species data observed
from satellite, the authors have previously devised a scheme of classifying regions (Misra and Takeuchi, 2016) into
LowLight-HighPollution (LLHP), HighLight-HighPollution (HLHP), LowLight-LowPollution (LLLP) and HighLight-
LowPollution (HLLP), as per their AQ levels and NL intensity. In this research the classification scheme was applied
on a time series nightlight data to draw inferences about transitions of pixel from one class to another. Based on
inferences from classification trends, relationship between various economic activities (such as construction, man-
ufacturing, vehicle population etc.) and air quality species is explored. Trend results derived were then used with
causality results found in Section 2.4.2.

2.4.2 Correlation and Granger causality between AQ and GDP

To analyze the impact of economic activities on urban air quality both correlation and Granger causality tests (Granger,
1988) were performed between AQ species and each of the GDP sectors. For this, firstly image showing AQ levels
for only urban regions was generated from which state level total values for each AQ species was calculated and
compared with the state GDP of different economic sectors (GDPsec).

To generate AQ images for urban regions, first a binary NL image for each year was prepared by considering only
pixel locations with DN >= 20. It was found on visual inspection that by setting DN >= 20 urban areas and their
peripheral regions could be distinguished from the non-urban regions. Binary NL image of each year also shows
the growth of urban areas,hence signifying expansion of human activities. Thereafter corresponding years’ binary
NL images were multiplied by the mean annual AQ composites (as generated in Section 2.3.1; referred to as AQmean
henceforth) to generate urban AQ images for each AQ species(referred to as AQurban hence).

For each state, correlation was computed between the state level total values for each of the AQ species and GDPsec
to find how each economic sector is related to individual AQ species. Further for each state these correlations were
calculated for two region types: (a)only urban regions , (b) only non-urban regions. That is, correlation of GDPsec
was found both with AQurban as well as AQnonurban (which is the difference of AQmean and AQurban ). The reason for
doing so was to identify which economic sectors are strictly an urban phenomena and could be contributing to urban
air pollution directly or indirectly. Thus it was assumed that for such sectors correlation(AQurban,GDPsec) shall be
higher than other sectors as well as correlation(AQurban,GDPsec)>> correlation(AQnonurban,GDPsec).

However despite compliance with stated assumptions one still cannot say with statistical confidence if a particular
sector ‘causes’ pollution. To overcome this weakness, Granger causality test (GCT) was employed. To identify the
cause and effect in a causality relationship, GCT works on the principle that: ‘the cause occurs before the effect’
and ‘the causal series contains special information about the series being caused that is not available in the other
available series’ (Granger, 1988). Each pair of GDPsec and AQurban is tested as bivariate function with lags to find
out if economic growth of the sector causes change in a AQ species levels or whether change in a AQ species levels
causes economic growth of the sector. Since GCT is a time-series model based test, first the dataseries is checked
if stationarity criteria at 90% confidence interval is satisfied using the Augmented Dicky-Fuller (ADF) unit root test
(MacKinnon, 2010) . If a unit-root is found, it was removed by differencing once or twice or taking a rolling mean
of the dataseries. GCT was subsequently performed for each cause-effect pair both forwards and backwards and the



Station Observation count Slope R2

Kanpur 2280 1.10 0.80
Pune 1320 0.95 0.79

Lahore 1238 0.90 0.77
Jaipur 1181 1.03 0.75

Karachi 1171 0.62 0.71
Gandhi College 877 1.11 0.72

Dhaka University 400 0.94 0.70
Kathmandu-Bode 335 0.81 0.89

Bhola 300 1.13 0.73
Nainital 284 0.95 0.65

Pantnagar 280 0.85 0.85

Table 2: Parameters of best-fit line obtained between
AODMOD and AODAER

Figure 3: Calibration for Kanpur station

direction of causality was ascertained only if p < 0.05 condition for both ‘likelihood ratio test’ and ‘chi-square test’
was satisfied. Both the ADF and GCT were implemented using the ‘StatsModel’ module for Python2.7.

2.5 Results and discussion

2.5.1 Comparison of AODMOD and AODAER

The results of correlation between AODMOD and AODAER show good agreement as can be seen by the generally good
values of R2(greater than 0.70) and the slope of fit almost equable to unity in most cases. All results are presented
in Table 2. It was also seen that for higher AODAER values, AODMOD tended to overestimate as can bee seen from
Figure 3

2.5.2 OLS & DNB intercalibration

OLS data suffers from oversaturation in urban areas and this is evident while calibration with DNB. Until DN = 53 a
linear trend line was fitted and thereafter an exponential curve is fitted to account for sudden increase in corresponding
DNB values. For the linear fit, intercept was constrained to zero to ensure radDNB is always zero when radDN is zero.
The piecewise calibration function finally adjudged was:

radDNB =


0.02radDN DN ≤ 53

7.34×10−8e0.04radDN +9.61 DN > 53
(3)

R2 for the piece-wise trend was found to 0.89. Even though it appears to be quite high, error bars of standard deviation
of radDNB associated with each radDN are quite large as seen in Figure 4a. It points to the inadequacy of Equation 3
to accurately represent measured radDNB specially for pixels with higher intensities.

2.5.3 Correlation of NL and GDP

Several researches have found good correlation between total NL (TNL) and GDP for India as well as other countries
((Bhandari and Roychowdhury, 2011, Forbes, 2013, Sutton et al., 2007)). However this is the first research to use
time-series inter-calibrated OLS data to compare it with GDP of India at both country and district scales. This
enables to ascertain if the calibrated NL can be used as an indicator of economic activities in 2.4.1.At the country
scale correlation between TNL and per capita GDP for the years 2001 to 2013 was found as 0.89. Using ‘spatial
analytic approach’by considering region wise NL, urban population and sub-national GDP of India previously Sutton
et al. (2007) found a correlation of 0.84 for the year 2000 data. Thus NL can capture macroeconomic trends at both
sub-national and temporal scale. However when the TNL at district level was compared to its GDP an interesting
feature was found. Districts with low GDP (around INR 40 billion) were generally better correlated with TNL than
districts having higher GDP (around INR 160 billion ). An extreme example of low and high GDP cities is shown in
Figure 5. This can be a result of either weak inter-calibration of OLS images (disadvantaged by saturated light in high
GDP regions) or the fact that TNL cannot adequately represent all activities going in high GDP regions very well.
In other words there are other GDP generating economic activities taking place in high GDP regions which may not
always translate into NL.



(a) (b)

Figure 4: (a) Calibration of DNB and OLS images for year 2013. Orange vertical lines represent error bar for that
point; (b) Correaltion of Total Nightlight (TNL) and GDP was found to 0.89

(a) (b)

Figure 5: (a)Ambedkar Nagar, a city with low GDP has R2 of 0.98 (b) Kanpur, a city with high GDP has R2 of 0.42
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Figure 6: Time series count of urban pixels in each LLHP, HLHP, LLLP and HLLP class based on their NL values
and (a) ANG values (b) AOD values (c) SO2 values (d) NO2 values

2.5.4 Trend of pixel classification by AQ and NL

For AOD, number of HLHP regions have increased since 2011 while for ANG, HLHP regions have decreased imply-
ing greater contribution of activities involving large aerosols (mineral dust) such as building-infrastructure construc-
tion in high economic activity areas. For SO2 and NO2 traditionally high economic regions have had high levels but in
recent years while the number of such regions with high SO2 has dwindled, for NO2 the number decreased until 2010
but has increased back since. Following Bhanarkar et al. (2005) study of the Jameshedpur city about contribution
of domestic household, industrial and vehicular emissions to urban SO2 and NO2, it can be assumed that decrease
in SO2 is on account of cleaner domestic fuel usage amongst other factors. However it is hard to say whether it is
industrial or vehicular emissions that are bringing about change in NO2. LLHP are cities in which the pollution due to
economic activities is not well correlated with their night light. small cities may not have all their economic activities
well correlated with NL: so even if light is low their pollution can be high. Steady increase in count of LLHP regions
w.r.t ANG and AOD could indicate greater construction activities and biomass burning in smaller towns.

2.5.5 Correlation and Granger causality between AQ and GDP

The correlation analysis was performed on AQurban images (e.g. Figure 7a) as well as AQnon−urban images. For 4
states, urban regions as large as the minimum resolution of OMI images (i.e. 25km) could not be found so they were
not considered for SO2 and NO2 analysis. From the correlation plots for each state, for example Figure 7b, it was seen
that correlations of SO2 with GDPsec were generally much lower than that of AOD, ANG and NO2. Yet the relative
order of the correlation magnitude amongst sectors was found similar irrespective of the AQ species. Also almost
all states had negative correlation of SO2 for non-urban regions. For urban regions too SO2 correlation was often
negative in case of states with clean air quality but rose to high values for highly industrialized states like Gujarat and
Tamil Nadu. Non-urban regions in most states (20 out of the 27) showed higher correlation of NO2 with GDPsec com-
pared with urban regions. Thus, suggesting that sufficient anthropogenic sources of NO2 are located outside defined
urban regions. Generally for all AQ species the following GDPsec were found to satisfy assumptions mentioned in
Section 2.4.2: Registered Manufacturing, Unregistered Manufacturing, Construction, Industry, Railways, Communi-
cation and Public Administration.

By performing GCT test, 3 main causality scenarios were identified: (a) AQ species Granger causing sector GDP, (b)
sector GDP Granger causing AQ species and (c) bidirectional Granger causality relationship between AQ species and
sector GDP. Importantly for a fair number of the states (about 40%) Banking/Insurance, Construction and Industry
sectors Granger caused AOD, ANG, SO2 as well as NO2. Further it was found that states which showed Granger
causality from Industry sector to AQ species also shared the same relationship for the Construction sector. Also the
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Figure 7: (a) AODurban for the year 2010; (b) Correlation of different GDP sectors with each AQ species for Maha-
rashtra state. Light blue represents correlation values for urban regions while dark represents the same for non-urban
regions

Figure 8: Granger causality test results of AOD, ANG, SO2 and NO2 with each GDP for sector for each state.Vertical
axis on left side represents state AQ species: 0 - Andaman and Nicobar, 1- Andhra Pradesh, 2 - Arunachal Pradesh,
3 - Assam, 4 - Bihar, 5 - Chandigarh, 6 - Chhattisgarh, 7 - Delhi, 8 - Goa, 9 - Gujarat, 10- Haryana, 11- Himachal
Pradesh, 12- Jammu and Kashmir, 13- Jharkhand, 14- Karnataka, 15- Kerala, 16 - Madhya Pradesh, 17 - Maharashtra,
18- Manipur, 19 - Meghalaya, 20 - Mizoram, 21 - Nagaland, 22 - Orissa, 23 - Puducherry, 24 - Punjab, 25 - Rajasthan,
26 - Sikkim, 27 - Tamil Nadu, 28 - Tripura, 29 - Uttar Pradesh, 30 - Uttaranchal, 31 - West Bengal; Horizontal axis for
each AQ species represents the GDP sector: 0 - Agriculture and allied, 1 - Bank &Insurance , 2 - Communication , 3 -
Construction, 4 - Industry, 5 - Other services 6 - Public Administration, 7 - Real Estate, 8 - Registered Manufacturing,
9 - Railways, 10 - Trade, hotel & restaurants, 11 - Transport, 12 - Unregistered Manufacturing, 13 - Electricity, water
& gas; Legend on right represents the direction of causality: 0 - No causal relationship found, 1 - AQ species Granger
causes sector GDP, 2 - Sector GDP Granger causes AQ species, 3 - Bidirectional relationship between AQ species
and sector GDP, 4 - Data not stationary

states in which the Banking/Insurance sector Granger causes AOD, showed a similar relation with Construction sector
a well. Considering a specific case example of Uttar Pradesh state, where 5 cities had the world’s dirtiest air quality



in 2014 (World Health Organization, 2014), Granger causes were found as shown in Table 3.

Table 3: Structural composition of GDP in India by economic sectors.

AQ species Granger cause
AOD Transport
ANG Communication, Public Administration , Railways
SO2 Communication, Railways
NO2 Agriculture, Construction, Transport, Electricity water and gas

How the other two directions of Granger causality, namely backward and bidirectional, are related with air quality is
not discussed here as they are out of scope of this paper. One another approach could be determine sectors responsi-
ble for AQ species could be to first find interdependence between the sectors themselves to understand their effect in
greater clarity.

As a note of caution Granger causality is not necessarily true causality. If a particular pair of sector GDP and AQ
species is controlled by a common third process even then the GCT test may show fail to reject the alternative hy-
pothesis of Granger causality. Yet, with the obtained results more research efforts can be directed into examining
causality in detail. Also, with the causality map policy making for any state can be enabled for economic domains
identified as cause. Regions can also be clustered for policy intervention based on common NL and AQ classification
trends and Granger causality relationships. It is expected that regions with lesser economic activities are likely to
show higher rates of air quality degradation under economic growth. This analysis can be used to develop an index
to track an urban region’s air quality trend with respect to its economic activities. Such an index will be useful to
estimate associated effect on public health due to urban air pollution arising out of economic activities.

2.6 Conclusion

In this paper multi-year OLS and DNB datasets were calibrated to result in a time series night light data which was
found suitable to represent GDP at country and district scales. Amongst the AQ datasets used, AOD from MODIS was
assessed for accuracy and was found to have a good enough correlation with ground AOD from several AERONET
stations. By studying trend of pixel classified by AQ and NL, it was deduced that infrastructure building are leading
to buildup of mineral dusts in areas with high economic activity. In the final section by assessing correlation between
various state level macroeconomic GDP indicators and air quality over 2004 to 2014 years a correlation and Granger
causality plot was prepared. Using these plots finding whether growth in a specific economic sector shall cause
increase in urban pollutants becomes clear. Importantly for 40% states Banking/Insurance, Construction and Industry
sectors were identified to Granger cause AOD, ANG, SO2 as well as NO2. These results can directly be incorporated
in policy studies to assess detailed mechanism of their effects. We also suggest using higher resolution economic data
at district scale to study the impact of economic activities on urban air quality in more detail.
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