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ABSTRACT: This paper examines the use of standardised generalised variance for statistical modelling of forest 

clutter in ALOS PALSAR multilook L-band dual-polarisation (HH and HV) data. Its probability density functions 

(PDFs) under homogeneous model and texture model were obtained, where the PDFs can be expressed in terms of 

Meijer G-function. From the modelling results, the texture model was found to provide a better fitting compared with 

the homogeneous model.  

 

1.  INTRODUCTION 
 

In multivariate statistics, generalised variance refers to the determinant of p-dimensional covariance matrix 

(Kocherlakota and Kocherlakota 1983; Anderson 2003, Chapter 7). Its positive p-th root is known as standardised 

generalised variance (SenGupta 1987a, 1987b, 2006). Since its first introduction by Wilks (1932, Section 3), the 

generalised variance has been considered as a measure of the spread of observations or overall variability (Goodman 

1968; Rencher and Christensen 2012, pp. 8182). The central and noncentral distributions of the generalised variance 

were derived from real Wishart distribution by Bagai (1962, 1965), Consul (1964), Mathai and Rathie (1971), Mathai 

(1972). The complex analogues of their results, which were obtained from complex Wishart distribution, appeared in 

Goodman (1963), Gupta and Rathie (1983), Zhu et al. (2009). 

Statistical modelling of radar clutter has received a considerable amount of attention in the literature. Among 

some relevant works are Yueh et al. (1991), Anastassopoulos et al. (1999), Sayama and Sekine (2002), Moser et al. 

(2006), Bian and Mercer (2014). In our previous papers (Lee and Bretschneider 2013, 2015), the so-called trace 

statistic was explored for modelling sea clutter and terrain clutter in multilook polarimetric synthetic aperture radar 

(SAR) data. The trace statistic is also applicable for single-look polarimetric SAR data, where it becomes squared 

radius in this case. Apart from the trace statistic, it is of particular interest to investigate another statistical measure, 

namely standardised generalised variance, for statistical modelling of radar clutter. 

This paper presents our modelling work of forest clutter in ALOS PALSAR multilook dual-polarisation data by 

using standardised generalised variance. The ALOS PALSAR data are described in Section 2. Sections 3 and 4 focus 

separately on the standardised generalised variance under homogeneous model and texture model. The forest clutter 

modelling results are discussed in Section 5. Finally, conclusions are drawn in Section 6.  

 

2.  ALOS PALSAR DATA 

 

For this study, nine sets of ALOS PALSAR single-look complex data (level 1.1) were downloaded via Vertex from 

the Alaska Satellite Facility (https://vertex.daac.asf.alaska.edu/). All the nine fine beam dual-polarisation (HH and 

HV) data were collected on the ascending orbit. Table 1 provides further information about the multitemporal datasets, 

which covered the same area of the South-East Pahang Peat Swamp Forest in the east coast of Peninsular Malaysia.  

 

Table 1: Specifications of ALOS PALSAR test data 

Scene identifier Acquisition date 

(day/month/year) 

Incidence angle at 

scene centre () 

Faraday rotation  

() 

Azimuth spacing 

(meter) 

ALPSRP075210050 23/06/2007 38.745 -0.15 3.1848579 

ALPSRP081920050 08/08/2007 38.765 -0.33 3.1914091 

ALPSRP088630050 23/09/2007 38.757 -0.26 3.1848079 

ALPSRP122180050 10/05/2008 38.760 -0.15 3.1846020 

ALPSRP128890050 25/06/2008 38.754 -0.17 3.1912686 

ALPSRP142310050 25/09/2008 38.750 -0.32 3.1848617 

ALPSRP236250050 01/07/2010 38.760 -0.29 3.1846684 

ALPSRP242960050 16/08/2010 38.758 -0.65 3.1914926 

ALPSRP249670050 01/10/2010 38.756 -0.69 3.1846099 

https://vertex.daac.asf.alaska.edu/


There were two SAR image files, one SAR leader file, one volume directory file, and one trailer file in each 

dataset. The number of range and azimuth pixels in the SAR image was 4640 and 18432, respectively. From the data 

set summary record in the leader file, the range pixel spacing was found to be 9.3685143 meters. The azimuth pixel 

spacing is, as tabulated in Table 1, about three times smaller than the range pixel spacing. 

In the ALOS PALSAR single-look slant range dual-polarisation (HH and HV) data, each pixel can be represented 

by a two-dimensional complex vector 
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where .1j  The 32-bit in-phase and quadrature components of a pixel are denoted separately by I and Q. The 

scalar c is equal to 10
(CF  32)/20

, where the calibration factor (CF) can be retrieved from the radiometric data record in 

the leader file. Since the azimuth spacing of the ALOS PALSAR single-look data is smaller than the range spacing, 

multilooking can then be performed by taking L neighbouring pixels in the azimuth direction for computing 

polarimetric covariance matrix: 
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The superscripts  and T denote the complex conjugate and transpose, respectively. The angle brackets . refer to the 

expectation. In the 22 Hermitian covariance matrix C, each diagonal element (also known as variance) is actually the 

backscattering coefficient or sigma-nought (
0
) for different polarisations. The sigma-nought of HH polarisation, for 

example, can be calculated in decibel (dB) as 

     .32CFlog10log10)dB(σ 2
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The phase difference between HH and HV polarisations is embedded in the off-diagonal elements. 

 

3.  STANDARDISED GENERALISED VARIANCE UNDER HOMOGENEOUS MODEL 

  

Under the homogeneous model, the polarimetric covariance matrix C is assumed to follow a bivariate (p = 2) scaled 

central complex Wishart distribution (L ≥ p):  
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The notations | . | and tr represent separately the matrix determinant and trace. p(.) refers to the complex multivariate 

gamma function and Σ is the population covariance matrix. The PDF of the standardised generalised variance under 

the homogeneous model for p = 2 is given by 
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where (.) denotes the gamma function and Kv(.) is the modified Bessel function of second kind with an order of v. By 

using the relation 
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the PDF in (5) can be written in terms of Meijer G-function as 
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For more details on the Meijer G-function, the reader is referred to Erdélyi et al. (1953), Luke (1969), Mathai (1970), 

Mathai and Saxena (1973), Prudnikov et al. (1990), Andrews (1998), Gradshteyn and Ryzhik (2015). As shown in 

Appendix A, the first and second moments of the standardised generalised variance (p = 2) are separately 
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and 

     .)1( || ) || ( LLE  ΣC  (9) 

The symbol E(.) represents the expected value. It is noted here that | Σ | in (7) can be estimated from the first moment.  

 



4.  STANDARDISED GENERALISED VARIANCE UNDER TEXTURE MODEL 

 

According to the texture model proposed by Lee et al. (1994), the polarimetric covariance matrix C is modulated by a 

scalar texture component t:  
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The scalar texture component, which is a real positive random variable, is assumed to be gamma-distributed as 
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It has a unit mean, i.e. E(t) = 1, and its second moment is given by E(t
2
) = (+1)/. Hence, its variance follows 

straightforwardly that var(t) = E(t
2
)  [E(t)]

2
 = 1/. As derived in Appendix B, the PDF of the standardised 

generalised variance under the gamma texture model (p = 2) is given by  
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Since both t and C are statistically independent, the first and second moments for the standardised generalised 

variance under the gamma texture model (p = 2) can be easily obtained as follows: 
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Apart from the gamma distribution, previous studies showed that the scalar texture component might also follow 

other statistical distributions (Frery et al. 1997; Delignon and Pieczynski 2002; Freitas et al. 2005): 

1) If t is inverse gamma distributed as 
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with E(t) = 1 and var(t) = 1/(1), then the PDF of the standardised generalised variance under the inverse gamma 

texture model (p = 2) is derived in Appendix C to be in the form 
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Its first moment is identical to (13), while its second moment is given by 
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2) If t is inverted beta distributed as  
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with E(t) = 1 and var(t) = 2/(1), then the standardised generalised variance under the inverted beta texture model 

(p = 2) is shown in Appendix D to have the following PDF: 
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Its first moment is given by (13), while its second moment takes the form 
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5.  IMPLEMENTATION AND RESULTS 

  

In this study three-look (L = 3) dual-polarization SAR data were formed for each scene, where the 22 polarimetric 

covariance matrix C was computed by using three pixels in the azimuth direction. The number of azimuth pixels 

reduced from 18432 to 6144 after multilooking. The value of calibration factor was 83 for all the nine scenes. Figure 

1 shows the three-look colour composite images, where ,σ0
HH  ,σ0

HV  and 0
HH

0
HV σσ are assigned to the red, green, 

and blue colour space. Being the longest river (about 459 km long) in Peninsular Malaysia, the Pahang River, which 

drains the water to the South China Sea, can be clearly seen in the figure. For statistical modelling, three regions of 



peat swamp forest were chosen and extracted from each three-look dual-polarization SAR data. In Figure 1, the three 

regions are shown in yellow colour and are labelled A, B, and C, respectively. Table 2 lists the number of pixels for 

the selected regions, where each region contains more than 65000 pixels. 

 

  
(a) (b) 

Figure 1: Three-look colour composite images generated from ALOS PALSAR single-look fine beam dual-polarisation data, 

which were acquired on (a) 23rd June 2007 and (b) 25th June 2008. © JAXA/METI 

 

Table 2: Number of pixels for selected regions of forest clutter 

 Number of range pixels Number of azimuth pixels Total number of pixels 

Forest A 253 265 67045 

Forest B 255 259 66045 

Forest C 258 266 68628 

 

The forest clutter modelling was carried out based on the aforementioned standardised generalised variance, 

where both the homogeneous model and the texture model were considered. For each selected region of forest clutter, 

the following procedures were applied: 

1. Compute the standardised generalised variance of each pixel. 

2. Construct the histogram of the standardised generalised variance. 

3. Compute the first and second moments of the standardised generalised variance. 

4. Estimate the value of  | Σ | from the first moment. 

5. Plot the PDF of the standardised generalised variance under the homogeneous model onto the constructed 

histogram. 

6. Estimate the alpha value from the second moment. 

7. Plot the PDF of the standardised generalised variance under the texture model onto the constructed histogram. 

It is important to note here that the PDF calculation was solved through numerical integration by using Simpson’s rule. 

Moreover, the Meijer G-function, which is available in the Python mpmath library (http://mpmath.org/), was used in 

this study.  

Table 3 lists the estimated alpha values of the gamma texture model. The range of the alpha values was between 

9.0391 and 14.174. The smaller alpha value indicated that the texture component exhibited higher variance and hence 

the region of forest clutter was more heterogeneous. Figures 2 and 3 present the histograms of the standardised 

generalised variance, which were constructed from the selected regions of forest clutter. Visually, it is obvious in the 

figures that the texture model fits the histograms better than the homogeneous model.  

 

http://mpmath.org/


  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2: Histograms of the standardised generalised variance. On the left, (a), (c), and (e) are the histograms constructed 

separately from Forest A, Forest B, and Forest C in the ALOS PALSAR dual-polarisation data, which were acquired on 23rd June 

2007. On the right, (b), (d), and (f) are the histograms constructed separately from Forest A, Forest B, and Forest C in the ALOS 

PALSAR dual-polarisation data, which were acquired on 23rd September 2007. The PDF of the standardised generalised variance 

under the homogeneous model is plotted in red colour. The magenta-coloured, blue-coloured, and green-coloured lines represent 

the PDFs of the standardised generalised variance under the gamma, inverted beta, and inverse gamma texture models, 

respectively. 

 
Table 3: Alpha values for selected regions of forest clutter 

Scene identifier Forest A Forest B Forest C 

ALPSRP075210050 12.8265 13.0244 12.9667 

ALPSRP081920050 14.0481 14.1740 13.4478 

ALPSRP088630050 13.4141 12.5391 12.4206 

ALPSRP122180050 13.2066 13.0274 12.5062 

ALPSRP128890050 10.3336 9.6960 9.0391 

ALPSRP142310050 13.6860 13.0381 13.5867 

ALPSRP236250050 12.5153 12.6010 12.2138 

ALPSRP242960050 12.5467 12.9288 12.4968 

ALPSRP249670050 11.3976 10.7420 11.1683 



  
(a) (b) 

  
(c) (d) 

  
(e)  (f) 

Figure 3: Histograms of the standardised generalised variance. On the left, (a), (c), and (e) are the histograms constructed 

separately from Forest A, Forest B, and Forest C in the ALOS PALSAR dual-polarisation data, which were acquired on 10th May 

2008. On the right, (b), (d), and (f) are the histograms constructed separately from Forest A, Forest B, and Forest C in the ALOS 

PALSAR dual-polarisation data, which were acquired on 25th June 2008. The PDF of the standardised generalised variance under 

the homogeneous model is plotted in red colour. The magenta-coloured, blue-coloured, and green-coloured lines represent the 

PDFs of the standardised generalised variance under the gamma, inverted beta, and inverse gamma texture models, respectively. 

 

In this study, the chi-squared test statistic was computed to further assess the goodness of fit. It is defined as 
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where k is the number of bins. The observed frequency and the expected (or theoretical) frequency for bin i are 

denoted separately by Oi and Ei. A smaller value of the chi-squared test statistic indicates a better fitting result. Table 

4 tabulates the computed chi-squared test statistics, where the number of bins used was 25. In Table 4, Homo 

represents the homogeneous model, while Gam, IB, and IGam refer separately to the gamma, inverted beta, and 

inverse gamma texture models. It is evident that the chi-squared test statistics were smaller for the texture model. The 

computed values confirmed that the texture model gave a better fitting compared with the homogeneous model. 

However, it is hard to identify the best texture model in this study. Although the inverted beta texture model 

outperformed others in many test cases for Forest B and Forest C, but the gamma texture model was found to fit better 

in some test cases for Forest A.  



Table 4: Chi-squared test statistics for selected regions of forest clutter 

Scene identifier Forest A Forest B Forest C 

 Homo Gam IB IGam Homo Gam IB IGam Homo Gam IB IGam 

ALPSRP075210050 4662.6 36.9 31.6 53.5 4401.9 45.5 38.7 58.0 4932.8 30.3 22.2 41.9 

ALPSRP081920050 3951.1 37.7 34.2 52.7 3590.4 20.3 23.5 46.4 4391.0 37.0 17.7 22.8 

ALPSRP088630050 4147.4 30.7 35.9 65.2 4922.3 29.1 16.8 34.2 4826.4 59.2 27.5 29.5 

ALPSRP122180050 4652.8 49.3 45.1 65.9 4200.4 21.9 23.6 50.0 4916.6 40.6 20.5 31.7 

ALPSRP128890050 7390.6 39.0 17.8 49.7 8592.8 24.3 17.4 73.6 10179.2 49.9 27.1 88.9 

ALPSRP142310050 4084.8 21.9 23.8 48.2 4139.6 13.7 25.6 60.3 4182.8 35.1 28.2 45.4 

ALPSRP236250050 5270.9 19.3 24.2 58.4 4799.5 25.3 21.5 47.9 5579.2 26.1 43.9 92.1 

ALPSRP242960050 4975.7 32.3 33.3 63.7 4532.8 36.1 22.6 37.3 5135.4 24.0 23.6 54.0 

ALPSRP249670050 6106.8 30.1 30.4 69.1 6848.6 48.4 36.8 73.6 6556.0 26.1 25.0 66.0 

 

6. CONCLUSIONS 

 

In this paper the standardised generalised variance was studied, where its PDFs under the homogeneous model and 

the texture model can be expressed in terms of the Meijer G-function. Furthermore, the standardised generalised 

variance was applied for modelling peat swamp forest clutter in the ALOS PALSAR three-look dual-polarisation (HH 

and HV) data. Both the homogeneous model and the texture model were evaluated visually and quantitatively. The 

statistical modelling results revealed that the latter gave a better fitting compared with the former. 

 

APPENDICES 

 

A. Moments for Standardised Generalised Variance under Homogeneous Model 

 

From (7), by letting ,|| Cy  the first moment is given by  
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The above solution employs the following definite integral (Gradshteyn and Ryzhik 2015, p. 859): 
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where an empty product is interpreted as unity. For the second moment, we have 
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By using (23), we get 
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B. Probability Density Function of Standardised Generalised Variance under Gamma Texture Model 

 

Under the gamma texture model, the texture component t is distributed as in (11) and the PDF of || C  is given in (7). 

Since t and || C  are statistically independent, their joint PDF is given by  
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Let || Ctu   and v = t, then the Jacobian of the transformation is 1/v and their joint PDF is  
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The PDF of u can be obtained by integrating out v:  
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The above solution involves the use of the following identities (Gradshteyn and Ryzhik 2015, p. 1043): 
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and 
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Moreover, it also employs the following definite integral (Gradshteyn and Ryzhik 2015, p. 861): 

 . 
,,

,,,,0
  

β

4λ
G

πβ

1
  

,,

,,
  λG )βexp(

1

12
1

2

2
2

0 1

12





























 






q

pm n
 qp

q

pm n
p q

bb

aa
dx

bb

aa
xx








 (30) 

  

C. Probability Density Function of Standardised Generalised Variance under Inverse Gamma Texture Model 

 

Under the inverse gamma texture model, the texture component t is distributed as in (15) and the PDF of || C  is 

given in (7). Since both the variables t and || C  are statistically independent, their joint PDF is given by  
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Let || Ctu   and v = 1/t, then the Jacobian of the transformation is 1/v and their joint PDF is  
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Note that the above solution uses (29) and (30). 

 



D. Probability Density Function of Standardised Generalised Variance under Inverted Beta Texture Model 

 

Under the inverted beta texture model, the texture component t is distributed as in (18) and the PDF of || C  is given 

in (7). Since both the variables t and || C  are statistically independent, their joint PDF is given by  
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Let || Ctu   and v = t, then the Jacobian of the transformation is 1/v and their joint PDF is  
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Thus, 
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The above solution employs (28) and the following definite integral (Prudnikov et al. 1990, p. 348): 
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