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ABSTRACT: Vegetation detection in urban area is an important task to understand the greenness of a city. With 
the development of remote sensing technology, we are able to obtain the multispectral image and full-waveform 
(FWF) lidar point clouds. The features of multispectral image for vegetation detection include spectrum, texture and 
3-D surface information from image matching. Airborne FWF lidar receives one dimensional continuous signal and 
offers useful information about the spatial structure of the target. Lidar also records the backscattering of laser pulse. 
As the multispectral image and lidar data can provide both spectrum and geometric information, it is important to 
understand the relevance of vegetation indices from both sensors. This study compares and analyzes different 
vegetation indices from active and passive sensors. We verify the detection rate of the vegetation using normalized 
difference vegetation index (NDVI), greenness index (GI), spectral and surface textures from multispectral image, 
and canopy height model, echo ratio (ER), echo width, backscattering and surface texture from airborne FWF lidar 
data. Texture information includes entropy and angular second moment (ASM) based on Gray Likelihood 
Co-occurrence Matrix (GLCM). These image-derived and lidar-derived features are used to separate vegetation and 
non-vegetation in an urban area. The test data are WorldView-2 multispectral images and Rigel Q680i lidar point 
clouds. The experimental results the correlation coefficient of echo ratio from airborne FWF lidar data is higher 
than 70% with NDVI from multispectral images, followed by the echo width and backscattering coefficient. 
 

1. INTRODUCTION 
 
The greenness of a city is becoming important because of the growing of city. The vegetation indices show the 
degree of greenness. The normalized difference vegetation index (NDVI) from multispectral images in the plant 
growth season (e.g. summer or winter) is a useful index to detect vegetation, but it is not easy to detect leaf-off 
vegetation in deciduous season (e.g. autumn or winter). The new technology of full-waveform (FWF) lidar systems 
has appeared in the last twenty years. Airborne FWF lidar is a kind of active remote sensing technology, and it can 
collect the information of ground by direct georeferencing, and it has been used in various applications in urban 
area like vegetation detection (Höfle and Hollaus, 2010 and Rutzinger et al., 2008).  
 
The feature of FWF lidar includes radiometric properties such as intensity, amplitude, echo width, backscatter cross 
section, etc. Wagner et al. (2006) extended the radar equation (Jelalian, 1992) to airborne lidar, and they also 
presented the theoretical considerations for backscatter cross section ([m2]) estimation and radiometric calibration. 
Wagner (2010) considered the backscattering coefficient (BS [m2m-2]) as additional physical quantity for ground 
surface characterization and to be used for radiometric calibration particularly. Alexander et al. (2010) compared 
backscatter cross section and backscattering coefficient for the terrain classification accuracy, the backscattering 
coefficient was better than backscatter cross section. 
 
Guo et al. (2011) proposed various features from multispectral image and FWF lidar for urban scene classification. 
There are many studies to associate the lidar and vegetation index (Tang et al., 2014 and Beland et al., 2014). 
Compared to other studies on vegetation detection, this study concentrates on a complex urban area, which have a 
high structural complexity with multilayer objects. This aim of study is to analyze the multispectral image from 
passive sensor and lidar from active sensor to understand the vegetation indices in urban areas. 
 
2. MATERIALS 
 
2.1 Study area 
 
The test area is located at Tainan city of Taiwan, and its area is about 240,000 (500*480) square meters (Figure 1). 
The terrain is flat, no particular topography, and the tallest building is about 70 meters. The study area is 
characterized by buildings, roads, as well as trees and grass in the park. 
 
2.2 Multispectral image and FWF lidar 



The multispectral image data were collected on December 12, 2010 by WorldView-2. The wavelength of satellite 
image is from 400nm to 900nm, and contains eight multispectral bands, including coastal (400~450nm), blue 
(450~510nm), green (510~580nm), yellow (585~625nm), red (630~690nm), red edge (705~745nm), NIR-1 
(770~895nm) and NIR-2 (860~900nm). This study used multispectral image, and the spatial resolution is about 2 
meters. The airborne FWF lidar data were obtained on August 4, 2010 by Rigel Q680i system. The laser pulse of 
system belong the near-infrared light, and the wavelength is 1550nm. The total number of point clouds in the study 
area is about 230 million, and convert density is about 9.6pt/m^2 (Table 1).  
 

 
(a) RGB Image 

 
(b) DSM Image 

Figure 1. The study area. 
 

Table 1. Parameters of data. 
Multispectral Image FWF Lidar 

Satellite WorldView-2 System Reigl LMS-Q680i 
Collection time 2010/12/12 Collection time 2010/8/4 

Wavelength 400~900 nm Wavelength 1550 nm 
Spatial Resolution 1.84 m (Nadir) Point density 9.6 pt/m^2 

 
3. METHODOLOGY 

 
3.1 Vegetation index from multispectral image 
 
This study uses multispectral image to calculate the NDVI and GI by spectrum numerical analysis as vegetation 
indices. These two NDVI were calculated by two NIR bands (Figure 2). Due to the structure of vegetation is 
complicated than the road surface or roof, so two-dimensional spectral image can also obtains texture information 
(e.g. entropy and angular second moment (ASM)) based on Gray Likelihood Co-occurrence Matrix (GLCM). The 
entropy is used to measure the messy degree of texture, the value is greater if the image closer to a random pattern. 
The ASM is used to measure of the degree of uniformity of the image locally, which is a measurement of the 
consistency degree of image texture. Figure 3 shows the results of these indices. As the texture feature is visually 
different from spectral indices, this study only consider NDVI-1, NDVI-2 and GI from multispectral images. 
 

 
(a) RGB Image 

 
(b) NDVI-1 

 
(c) NDVI-2 

 
(d) GI 

Figure 2. Spectral indices. 
 

 
(a) RGB Image 

 
(b) Gray Image 

 
(c) Entropy Image 

 
(d) ASM Image 

Figure 3. Lidar indices. 

http://www.satimagingcorp.com/satellite-sensors/worldview-2/


 
3.2 Vegetation index from FWF lidar 
 
The features of FWF lidar contain the intensity of each return pulse, the amplitude and echo width from the return 
signals, and the return number from the received time. Those features are useful information about the spatial 
structure of the target. The canopy height model (CHM) can be calculated through geometric analysis of point 
clouds, it represented the height of ground objects. The echo ratio can be obtained by statistical analysis (Hofle et 
al., 2012), it is referred to the structure of the surface coverings and suitable to detect the complex structure of trees. 
The intensity, amplitude and width of return echo can be calculate by energy analysis. Both intensity and amplitude 
are based on the energy of pulse. The intensity indicates the magnitude of the reflected pulse, and the amplitude is a 
ratio of the echo signal and the detection threshold of the instrument (Riegl, 2014). To avoid data errors, we only 
consider the points within 95% confidence interval (3σ). All these features are interpolated by Kriging interpolation, 
so the FWF lidar and multispectral image use the same data structure. Figure 4 shows the features of FWF lidar. 
 

 
(a) RGB Image 

 
(b) CHM Image 

 
(c) Intensity Image 

 

 
(d) Amplitude Image 

 
(e) Width Image 

 
(f) Echo Ratio Image 

 
(g) BS Image 

Figure 4. The feature image from FWF lidar. 
 
This study also calculates texture (e.g. entropy and ASM from BS images), echo width image, ER image and CHM 
image (Figure 5). The boundaries of ground objects can be extracted clearly, but the texture of individual objects 
are not easy to compare with other features. Hence, this study only discusses BS, width, ER and CHM from FWF 
lidar. 
 

 
(a) BS-Entropy 

 
(b) BS-ASM 

 
(c) Width-Entropy 

 
(d) Width-ASM 

 
(e) ER-Entropy 

 
(f) ER-ASM 

 
(g) CHM -Entropy 

 
(h) CHM -ASM 

Figure 5. The texture image from the feature of FWF lidar. 
 



3.3 Comparison of various features 
 
The study manually selected 100 blocks which are 25 square (5*5) meters in the study area. The average values 
were calculated within the block after outlier detection. The land covers for classification are trees, grasses, roads 
and buildings. Table 2 is the value of different vegetation indices from multispectral image (the values are 
normalized to 0~255). The value of vegetation is higher than non-vegetation, and distinguish each other easily. 
 

Table 2. The values of various features from multispectral image. 

 NDVI-1 NDVI-2 GI 
Classification Min Max Mean Std. Min Max Mean Std. Min Max Mean Std. 

Veg. 
Tree 186  206  198.97  4.70  177  200  191.42  5.24  162  171  167.81  1.65  
Grass 198  210  205.47  1.91  189  205  199.45  2.17  157  168  162.43  1.48  

Nonveg. 
Road 127  137  131.84  1.71  112  125  117.92  2.16  136  154  146.25  2.82  
Building 132  138  135.38  1.01  121  126  123.49  1.30  119  127  123.02  1.73  

 
Table 3 is the value of different vegetation indices from FWF lidar. Among them, the tree can be distinguished from 
grasses or buildings through BS, but it is easy to be confused with the road. The width of tree is widely, and its 
standard deviation is higher than grass, road and building. The ER of tree is higher than grass and road because it's 
complex structure, but is closer to edges of buildings.  
 

Table 3. The values of various features from FWF lidar. 
  BS Width ER CHM 

Classification Min Max Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max Mean Std. 

Veg. 
Tree 35  226  133.50  34.65  40  65  48.94  3.32  6.89  25.57  16.23  3.50  6.9  26.6  15.15  3.41  
Grass 309  528  366.25  25.72  44  47  45.53  0.57  0.00  0.56  0.02  0.02  0.0  0.3  0.12  0.13  

Non-veg. 
Road 11  692  166.91  51.87  42  46  43.48  0.68  0.00  1.43  0.07  0.19  0.0  0.1  0.03  0.02  
Building 139  746  586.95  59.07  45  48  46.74  0.73  9.02  61.79  37.41  19.75  6.0  60.0  31.14  17.41  

 

4. RESULTS 
 
All of these indices which contains NDVI-1, NDVI-2, GI, BS, width, ER and CHM were plotted into a scatter 
diagram (Figure 5). We analysis the correlation coefficient of various indices from point clouds and multispectral 
image. The results show that ER and NDVI-1/NDVI-2 are highly correlated (i.e. > 0.7). The followings were echo 
width and backscattering coefficient (Table 4). The study uses pixel-based classification based on minimum 
distance method. The results of classification through single feature from FWF lidar are not good enough as 
different land covers contain similar properties (Figure 6). All of the Kappa coefficient are less than 0.6 (Table 5). 
In which, the grass is similar to roads and roofs. We consider the separation of vegetation and non-vegetation. The 
detection rate reaches 0.78 kappa coefficient using ER (Table 6). 
 

 
Figure 6. Scatter plot of the various vegetation indices. 



 
Table 4. Correlation Coefficient Matrix. 

  NDVI_1 NDVI_2 GI Int. Amp. BS BS_E BS_A Wid. Wid_E Wid_A ER ER_E ER_A CHM CHM_E CHM_A 
NDVI_1 1 0.992  0.373  -0.431  -0.392  -0.551  0.195  -0.227  0.672  0.439  0.439  0.736  0.583  -0.514  0.326  -0.551  -0.506  
NDVI_2 0.992  1 0.338  -0.403  -0.382  -0.530  0.175  -0.209  0.656  0.420  0.420  0.712  0.545  -0.475  0.330  -0.530  -0.486  
GI 0.373  0.338  1 -0.316  -0.375  -0.432  0.026  -0.039  0.353  0.191  0.191  0.443  0.346  -0.291  0.268  -0.432  -0.489  
Int. -0.431  -0.403  -0.316  1 0.754  0.766  0.038  -0.034  -0.210  -0.082  -0.082  -0.570  -0.415  0.370  -0.150  0.766  0.329  
Amp. -0.392  -0.382  -0.375  0.754  1 0.727  0.162  -0.140  -0.155  -0.022  -0.022  -0.429  -0.256  0.219  -0.186  0.727  0.300  
BS -0.551  -0.530  -0.432  0.766  0.727  1 0.178  -0.168  -0.285  0.039  0.039  -0.656  -0.380  0.320  -0.194  -0.392  0.373  
BS_E 0.195  0.175  0.026  0.038  0.162  0.178  1 -0.987  0.358  0.247  0.247  0.282  0.525  -0.547  0.073  0.178  -0.244  
BS_A -0.227  -0.209  -0.039  -0.034  -0.140  -0.168  -0.987  1 -0.388  -0.275  -0.275  -0.296  -0.523  0.541  -0.118  -0.168  0.231  
Wid. 0.672  0.656  0.353  -0.210  -0.155  -0.285  0.358  -0.388  1 0.662  0.662  0.688  0.585  -0.534  0.455  -0.289  -0.455  
Wid_E 0.439  0.420  0.191  -0.082  -0.022  0.039  0.247  -0.275  0.662  1 1.000  0.356  0.378  -0.330  0.227  -0.139  -0.215  
Wid_A 0.439  0.420  0.191  -0.082  -0.022  0.039  0.247  -0.275  0.662  1.000  1 0.356  0.378  -0.330  0.227  -0.139  -0.215  
ER 0.736  0.712  0.443  -0.570  -0.429  -0.656  0.282  -0.296  0.688  0.356  0.356  1 0.665  -0.608  0.391  -0.656  -0.621  
ER_E 0.583  0.545  0.346  -0.415  -0.256  -0.380  0.525  -0.523  0.585  0.378  0.378  0.665  1 -0.978  0.263  -0.380  -0.701  
ER_A -0.514  -0.475  -0.291  0.370  0.219  0.320  -0.547  0.541  -0.534  -0.330  -0.330  -0.608  -0.978  1 -0.187  0.320  0.672  
CHM 0.326  0.330  0.268  -0.150  -0.186  -0.194  0.073  -0.118  0.455  0.227  0.227  0.391  0.263  -0.187  1 -0.194  -0.400  
CHM_E -0.551  -0.530  -0.432  0.766  0.727  -0.392  0.178  -0.168  -0.289  -0.139  -0.139  -0.656  -0.380  0.320  -0.194  1 0.373  
CHM_A -0.506  -0.486  -0.489  0.329  0.300  0.373  -0.244  0.231  -0.455  -0.215  -0.215  -0.621  -0.701  0.672  -0.400  0.373  1 

  *_E: Entropy     *_A: ASM     
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(f) Width 
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■：Tree, ■：Grass, ■：Road, ■：Building. 
Figure 6. Classification results. 

 
Table 5. Accuracies of classification (4 landcovers) 

  
Tree Grass Overall 

Accuracy 
Kappa 

Commission Omission Prod. Acc. User Acc. Commission Omission Prod. Acc. User Acc. 

BS 33.21% 33.87% 66.13% 66.79% 55.82% 3.14% 96.86% 44.18% 61.46% 0.4746  

Width 7.51% 43.00% 57.00% 92.49% 55.32% 58.41% 41.59% 44.68% 72.64% 0.6120  

ER 4.81% 17.31% 82.69% 95.19% 81.48% 2.00% 98.00% 18.52% 41.44% 0.2695  

CHM 31.19% 0.46% 99.54% 68.81% 66.68% 6.44% 93.56% 33.32% 61.48% 0.4752  
 

Table 6. Accuracy of classification (tree and non-tree) 

 
Tree Non-trees Overall 

Accuracy 
Kappa 

Commission Omission Prod. Acc. User Acc. Commission Omission Prod. Acc. User Acc. 

ER 0.05% 19.44% 80.56% 99.95% 21.12% 0.06% 99.94% 78.88% 88.72% 0.7767  



 
5. CONCLUSIONS 
 
The experimental results indicate that the correlation coefficient of echo ratio from airborne FWF lidar data is 
related to NDVI from multispectral images. Vegetation of urban environment can be detected by NDVI or GI in the 
lush plant growth season, but the passive spectrum can’t analyze correctly when the vegetation lack chlorophyll. 
Airborne FWF lidar can provide different features such as echo width, ER or BS as vegetation indices in deciduous 
season. Trees detection can achieve good results through the ER from lidar in urban environment. Echo width from 
FWF lidar can be roughly distinguish between trees, grass and other ground objects, because of the different 
roughness of surface. The texture of multispectral image or FWF lidar is still not clear in classification, but it can 
distinguish the edges of objects for segmentation. The integration of multivariate data will not only can identify 
more data from spatial information but also improve the correctness of vegetation detection. 
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