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ABSTRACT: Light Detection and Ranging is an active system, that measures distance by emitting a laser beam to 

the ground surface and then receiving the reflected signal. The incident angle of the laser beam and the surface type, 

in addition to its range and atmospheric effects, affect the received signal. Recent studies have utilized the intensity 

information of airborne LiDAR data for classification. However, such information was not fully explored because 

these studies only employed single flight lines. Typical airborne LiDAR data consist of multiple flight lines with 

varying overlaps (40%–60%); this condition implies that a significant portion of the ground objects can be 

measured from two different viewing aspects (each from adjacent flight lines). The intensity measurements 

obtained from different viewing aspects can be utilized to exploit the bi-directional reflectance distribution function 

property of the ground surface for classification. We employed the Rahman–Pinty–Verstraete model to investigate 

the effects of incident angle and surface type on intensity data, which were obtained with an Optech ALTM Pegasus 

airborne laser scanner with 60% overlap.  

 

INTRODUCTION 

 

Incidence angle influences the illuminating energy impinged on the surface; these two have a cosine function 

relationship (Höfle and Pfeifer, 2007; Jutzi and Stilla, 2006). Different surface types have different Bidirectional 

Reflectance Distribution Function (BRDF); thus, the received energy and incident angle must be obtained with 

another model (Höfle and Pfeifer, 2007). The Rahman–Pinty–Verstraete (RPV) model, which can describe the 

relationship between received energy and incident angle, employs three parameters to quantify BRDF (Rahman et 

al., 1993). The three parameters can describe the shape of BRDF (i.e., concave or convex) and the hot spot effect. 

Promising results have been obtained from passive remote sensing images, where the full BRDF information 

simplified by the three parameters of the RPV model is utilized for classification (Koukal and Atzberger, 2012). A 

few studies have explored the use of full BRDF information for Light Detection and Ranging (LiDAR) data 

(Disney et al., 2009). 

A high degree of overlap is the condition for using the RPV model. Passive remote sensing is applicable because 

the optical speed of the imaging sensor is sufficiently high to obtain images. The forward overlap can reach 80%–
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90%. Currently, most LiDAR data are collected with 40%–60% side overlap because of the constraint imposed by 

the cost and design of data acquisition. An increasing amount of LiDAR systems is being manufactured with 

improved capability (e.g., multi-sensors with different viewing angles). The Optech ALTM Pegasus airborne laser 

scanner has two channels with a 2.2° angle difference. It can obtain more incident angles of the surface because of 

the high forward overlap. LiDAR system can not only control the light source and emitting energy but also avoids 

some influencing factors of the passive remote sensing system, such as background reflections and shadows. 

However, the intensity of received LiDAR data remains affected by incident angle and surface type (Koukal et al., 

2014; Kukko et al., 2008). We employed the RPV model to describe the relationship between incident angle and 

intensity data on different surface types. 

 

MATERIAL 

 

The study area is in Tseng-Wen Reservoir which is located in southern Taiwan (23° 17' 56" N, 120° 39' 56" E) 

(Figure 1). The LiDAR data were obtained with the Optech ALTM Pegasus airborne laser scanner on July 23 to 24, 

2013. The sensor was configured to acquire data with ±9° field of view (FOV). The laser scanner has two different 

laser channels; the incident angles are 0° and 2.2° in the forward direction. Typical airborne LiDAR data consist of 

varying overlaps (60%–70%), which implies that a significant portion of the ground objects can be measured from 

three different viewing aspects. The airborne LiDAR system has an average flying height of 1920 m and point 

density of 22 points/m2. Five consecutive flight lines were selected (flight line numbers 10 to 14; Figure 1(a)) 

because these five flight lines contain more different surface types. Thirty sample plots were selected. The region 

contains four surface types, including road, bare land, grass, and roof. The area of the sample plots ranged from 12 

m2 to 80 m2 with the target varying (Figure 1(b)). 

 

 

Figure 1. (a) Study area is enclosed in a red box. The distribution of five flight lines is also shown. (b) A total of 30 

sample plots containing four surface types each are represented by different color blocks. 

 

METHODOLOGY 

 



The Rahman–Pinty–Verstraete (RPV) model 

 

The BRDF was first proposed by Nicodemus et al. (1977). It describes the light rays reflected on the surface; the 

light ray incidents on it are from a particular direction. We utilized the RPV model to describe the BRDF. The RPV 

model is a semi-empirical model (1) that describes surface bidirectional reflectance (Rahman et al., 1993). It 

doesn’t require a rigorous hypothesis on the nature and structure of the surface. Owing to this characteristic, the 

model can be applied to an actual surface regardless of how complex its structure and type are. Another property of 

the model is that the parameters utilized are quantitative; the model only requires three parameters to operate 

(𝜌0, 𝑘, 𝛩). 

 

𝜌𝑅𝑃𝑉(𝜃𝑖 , 𝜙𝑖 , 𝜃𝑟 , 𝜙𝑟) = 𝜌0 ∙
𝑐𝑜𝑠𝑘−1𝜃𝑖𝑐𝑜𝑠

𝑘−1𝜃𝑟

(cos𝜃𝑖+cos𝜃𝑟)
1−𝑘 ∙ 𝐹(𝑔) ∙ [1 + 𝑅(𝐺)]                                        (1) 

 

where 𝜌𝑅𝑃𝑉 is the reflectance of a surface illuminated from direction (𝜃𝑖 , 𝜙𝑖) to observed direction (𝜃𝑟 , 𝜙𝑟), 𝜌0 

is an arbitrary parameter that characterizes the intensity of the reflectance of the surface (0 ≤ 𝜌0 ≤ 1), and 𝑘 

indicates the level of anisotropy of the surface (𝑘 < 1 for the bowl-shaped pattern, 𝑘 > 1 for the bell-shaped 

pattern).  

The second term of the RPV model (1) is modified by the Minnaert function (Minnaert, 1941). The other 

components of the RPV model are shown below. The function 𝐹(𝑔) is  

 

𝐹(𝑔) =
1−Θ2

[1+Θ2−2Θ∙cos(𝜋−𝑔)]1.5
                                                                    (2) 

 

where 𝛩 is the parameter that controls the relative amount of forward (0 ≤ Θ ≤ 1) and backward (−1 ≤ Θ ≤ 0) 

scattering. The phase angle of scattering 𝑔 is provided by  

 

cos(𝑔) = cos 𝜃𝑖 cos𝜃𝑟 + sin𝜃𝑖 sin 𝜃𝑟 cos(𝜙𝑖 − 𝜙𝑟)                                                 (3) 

 

The hot spot effect is approximated by : 

 

1 + 𝑅(𝐺) = 1 +
1−𝜌0

1+𝐺
                                                                         (4) 

 

where 𝐺 is the geometric factor provided by  

 

𝐺 = [tan2𝜃𝑖 + tan2𝜃𝑟 − 2 ∙ tan𝜃𝑖 tan 𝜃𝑟 cos(𝜙𝑖 − 𝜙𝑟)]
0.5                                            (5) 

 

The application of the RPV model 

 

The RPV parameters and incident angle were varied to understand how they affect the RPV model values. All the 



variations are shown in Figure 2. The parameters in Figure 2(a) were used as reference guideline to compare with 

other parameters. The magnitude of the model results varied with 𝜌0, and shape patterns were controled by 𝑘 

sensitivity. The orientation of the hot spot effect varied as the 𝛩 value changed. This condition is similar to the 

conditions when the RPV model is used in LiDAR intensity in Figure 2 (right column). 

The intensity of the LiDAR point clouds is mainly due to backscattering because the incident angle of the beam is 

equal to the angle of reflection. The azimuth angle of the incident and reflected beam is assumed to be 0 degrees. 

Based on the above condition, the simplified formula of the RPV model used in LiDAR is provided by 

 

𝜌𝑅𝑃𝑉(𝜃𝑖 ) = 𝜌0 ∙
𝑐𝑜𝑠2𝑘−2𝜃𝑖

(2cos𝜃𝑖)
1−𝑘 ∙

1−𝛩2

[1+𝛩2+2𝛩]1.5
∙ [2 − 𝜌0]                                                  (6) 

 

Examples of the results of this formula are shown on the right side of Figure 2. In addtion to 𝜌0 affecting the 

magnitude of the models (Figures 2(a) and 2(b)), parameter 𝑘 varied from 1.25 (> 1) to 0.9 (<1); the models 

exhibited a bowl-shaped pattern from its initial bell-shaped one (Figures 2(a) and 2(c)). When 𝛩 was changed 

from −0.5 to 0.5, the value of the models decreased considerably because of positive 𝛩, which indicates that 

forward scattering is mainly for the data and backward scattering is minimal (Figures 2(a) and 2(d)). We employed 

the simplified RPV model to fit the actual LiDAR data and determine the relation between incident angle and 

intensity. The parameters were estimated according to the fitting result. 

 

 

Figure 2. Examples of varying the three parameters (𝜌0, 𝑘, 𝛩) are shown in (b) to (d). (a) is for reference. Three 

cases of incident angles are shown. The RPV model used in the LiDAR condition and each parameter value of the 

models are shown in the rightmost figure. The red box shows the varied parameter. 

 

RESULTS AND DISCUSSION 

 

The fitting results of the RPV parameters are shown in Figure 3. The results of parameter 𝛩 are negative for all 

feature types and thus indicate the dominace of backward scattering because of the fact that the LiDAR data are 



retroreflective. The dominance of backward scattering is slightly higher for grass than for other types, because its 

𝛩 value is higher in the former. The parameter 𝑘 of bare land is lower than that of grass and road. Roof shows 

considerable variation in 𝑘 but not so much in 𝜌0 and 𝛩. Parameter 𝜌0 and 𝛩 of all surface types appear to 

have a symmetrical trend. 

 

 

Figure 3. RPV parameters derived from the fitting results of all sample plots containing four surface types. 

 

The relation of RPV-modelled incident angle and intensity show specific class differences for the selected sample 

plots (bare land, grass, road and roof). This relation is analyzed by visual and qualitative analysis in Figure 4. The 

bare land and road fitting curves are close to straight lines and more concentrated, but the road curves tend to be 

slightly oblique. The distributions of grass fitting curves are more separate and bended than those of bare land and 

road probably because of the different generation times of grass. The fitting curve of bare land is relatively flat and 

is agreement with the foregoing result that parameter 𝑘 of bare land is lower than that of grass and road. Through 

aerial photographs, the type of roof materials can be divided into four categories (Fgure 4(d)) (the roof types are 

separated by red lines). The roof fitting curves results are also grouped into four types according to the magnitude 

of the difference among the intensity values in Figure 4(d). Except for inclined roof, the LiDAR incident angle of 

the surface types are concentrated below 20 degrees, given that FOVwas set between −9°–9°. 

 

 

Figure 4. Fitting results of the four surface types. 



 

CONCLUSION 

 

This study investigated the effect of incident angle and surface type on LiDAR intensity and evaluated the 

feasibility of using the semi-empirical RPV model for LiDAR data. Different surface features can be distinguished 

by RPV parameters. Bare land and road exhibit a common trend with high consistency; however, grass shows a 

common trend with a large variation.  In addition, the parameter 𝛩 in all the sample plots is negative, which is 

consistent with the LiDAR data property when the receiver is placed in the retroreflection direction. Parameters 𝜌0 

and 𝛩 are similar in the different surface types, but parameter 𝑘 is different. The promising results of the RPV 

show that the model can be applied to LiDAR data. 
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