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ABSTRACT: In general, airborne photogrammetry and LiDAR measurements are applied to geometrical data 

acquisition for automated map generation and revision. However, attribute data acquisition and classification depend 

on manual editing works including ground surveys. On the other hand, SAR data have a possibility to automate the 

attribute data acquisition and classification. Thus, we focus on an integration of LiDAR and SAR data to achieve a 

frequent map update with attribute data acquisition. In this study, we use airborne LiDAR and satellite SAR data to 

classify buildings. Firstly, we generate a digital surface model (DSM) from point cloud acquired with airborne LiDAR. 

Secondary, the DSM is registered with a normalized radar cross section (NRCS) image calculated from SAR data. 

Thirdly, buildings are extracted from the DSM. Finally, the buildings are classified into several clusters in the DSM. 

We clarified that a combination of airborne LiDAR and satellite SAR data can extract and classify buildings in urban 

area. 

 

1. INTRODUCTION 

 

A frequent map revision is required in GIS applications, such as disaster prevention and urban planning. In general, 

airborne photogrammetry and LiDAR measurements are applied to geometrical data acquisition for automated map 

generation and revision. In the airborne photogrammetry, a geometrical modeling and object classification can be 

automated using color images. Stereo matching is an essential technique to reconstruct 3D model from images. 

Recently, structure from motion (SfM) is proposed to generate 3D mesh model from random images (Uchiyama, 

2014). Although, object classification methods are automated using height data estimated with stereo matching and 

SfM, it is difficult to recognize construction materials, such as woods and concrete. The construction materials are 

significant attribute data in building modeling and mapping. Therefore, ground survey and manual editing works are 

required in attribute data classification. 

In the LiDAR measurements, modeling and object classification are also automated by a segmentation of point cloud 

data (Sithole, 2003). The intensity data also assist the object classification (Antonarakis, 2008). Moreover, data 

fusion approaches are proposed using aerial images and LiDAR data. These approaches focus on modeling accuracy 

improvement and processing time improvement (Uemura, 2011). However, these approaches classify geometrical 

attributes. 

On the other hand, although geometrical data extraction is difficult, SAR data have a possibility to automate the 

attribute data acquisition and classification. The SAR data represent microwave reflections on various surfaces of 

ground and buildings. There are many researches related to monitoring activities of disaster, vegetation, and urban. 

Moreover, we have an opportunity to acquire higher resolution data in urban areas with new sensors, such as ALOS2 

PALSAR2 (Japan Aerospace Exploration Agency, 2014). Therefore, in this study, we focus on an integration of 

airborne LiDAR data and satellite SAR data for building extraction and classification. 

 

2. METHODOLOGY 

 

Our process is shown in Figure 1. Firstly, we generate DSM and reflection intensity orthoimage from LiDAR point 

cloud data. Secondary, these data are registered using corresponded points taken from each datum. Thirdly, buildings 

are extracted from the DSM. Finally, buildings are classified with normalized radar cross section (NRCS) calculated 

using SAR data. 

 



  
Figure 1. Our process flow 

 

2.1 Registration of LiDAR and SAR data 

 

In a registration between SAR and LiDAR data, corresponded points are required to be extracted from each datum. 

Although SAR data and LiDAR data have different indices, we can recognize road intersections, rivers, and bridges 

as feature points in manual. 
Before a feature extraction procedure, two types of orthoimages are prepared as follows. Firstly, digital number (DN) 

of SAR image is converted into an orthoimage of NRCS. We use the following transformation formula with 

calibration factor (CF). We substitute -83 for the CF (ALOS User Interface Gateway, 2009). 

 

NRCS(dB)=10×log10(DN2)+CF  (1) 

 

Next, the other orthoimage is generated from reflection intensity values taken from LiDAR point cloud data. In this 

procedure, the reflection intensity values are projected into DSM generated from LiDAR data, as shown in Figure 2 

and Figure 3. 

We selected several corresponding points, such as road intersections, rivers, and bridges, from each orthoimage. 

Moreover, the affine transformation is applied to the image registration between SAR and LiDAR data.  

 

     
        Figure 2. DSM                 Figure 3. Reflection intensity orthoimage 

 

2.2 Building footprint extraction 

 

Building footprints are extracted from DSM, as shown in Figure 4. 

 

  
Figure 4. Process flow of building footprint extraction 



Firstly, building edges are detected using height differences between building roofs and ground surfaces from DSM 

with a 3 × 3 operator. Although the building edges are discontinuous, approximate building features are detected in 

this step. Secondary, building boundaries are extracted. Discontinuous edges are connected to each other in the DSM 

with 8-neighborhood pixel filtering. The connected edges are defined as a building boundary. Thirdly, segmentation 

is applied to each region inside of the building boundary to refine building footprints. Although extracted region 

include many noises, such as bridges, street trees, and automobiles, an approximate geometry of each region is 

extracted in this step. Finally, the region segments are filtered with their perimeter and area to extract building 

footprints. 

 

2.3 Building classification 

 

In this study, three types of approaches are applied to our building classification. The first approach is to classify 

buildings (roof materials) with an average value of NRCS in each building footprint. Buildings are classified into 

several hierarchies with non-supervised classification using NRCS average value. The second approach is to classify 

buildings (roof materials) with reflection intensity values taken from LiDAR data. Buildings are also classified 

several hierarchies with non-supervised classification. The third approach is prepared to validate the above-mentioned 

approach. Height and area (3D data) taken from LiDAR data are used to estimate building types, such as a high-rise 

building, large facilities or house.  

 

3. EXPERIMENT 

 

In our experiment, we selected Toyosu and Monzennakacho town in Tokyo as our study area. This area includes 

various types of buildings, such as residential houses, high-rise buildings and shopping malls, as shown in Figure 5. 

 

 
Figure 5. Study area 

 

We prepared point cloud data acquired with an airborne LiDAR and geocoded satellite SAR data, as shown in Table 

1 and Table 2. Moreover, threshold values were used in building extraction and classification, as shown in Table 3. 

 

Table 1. Specification of LiDAR data 

Sensor Observer Date Spatial resolution number of points 

Airborne LiDAR Kokusai Kogyo Co., Ltd 7, March, 2011 0.5m（DSM） 4000×4000 

Airborne LiDAR Aero Asahi Corporation 26, August , 2013 0.1m 5498730 

 

Table 2. Specification of SAR data 

Sensor Observer Date Spatial resolution Geocoded Polarized wave 

ALOS PALSAR JAXA 20, March, 2009 12.5m Map North HV 

 

Table 3. Threshold values  

 
Step 1 Step 2 Step 3 Step 4 

High-rise 

buildings 

Large scale 

facilities 
Residential 

Height 2 m 0.2 m 2 m --- 50 m --- --- 

Area --- --- --- 62.5 m2 --- 6250 m2 500 m2 

Perimeter --- --- --- 5000 m --- --- --- 

Perimeter/area --- --- --- 0.3 --- --- --- 

 

 



4. RESULTS 

 

We extracted 911 buildings from DSM. First, Figure 6 shows a result in the step 1. White edges indicate extracted 

building boundaries with height differences. Next, Figure 7 shows a result in the step 2. Dilated white edges are 

refined building boundaries. Figure 8 shows a result in the step 3. White regions indicate extracted building footprints. 

Figure 9 shows a result in the step 4. 

 

    
Figure 6. Result in the step 1             Figure 7. Result in the step 2 

 

    
Figure 8. Result in the step 3             Figure 9. Result in the step 4 

 

Classified buildings with NRCS are shown in Figure 10. NRCS values are indicated from blue (lower NRCS) to red 

(higher NRCS) color. Classified buildings with LiDAR reflection intensity are shown in Figure 11. LiDAR reflection 

intensity values are indicated from blue (lower intensity) to red (higher intensity) color. 

 

          
    Figure 10. Classified buildings with NRCS   Figure 11. Classified buildings with LiDAR reflection intensity 

 



Classified buildings with 3D data are shown in Figure 12. Color index indicates building attributes. We extracted 

three attributes, such as high-rise buildings (red), large-scale facilities (orange), and residential houses (green).  

 

 
Figure 12. Classified buildings with 3D data 

 

5. DISCUSSION 

 

Classification results are summarized as shown in Table 4. This table shows the number of buildings which belongs 

to each cluster. In the classification with NRCS, we have confirmed that spatial resolution was too low to recognize 

small residential buildings and complex roofs of large buildings. In our experiment, supervised classification in the 

building extraction was affected by speckle noises. Therefore, we would propose speckle noise filtering before the 

classification.  

 

Table 4. Classification results with NRCS 

Cluster number 1 2 3 4 5 6 7 8 9 10 

Classified 

buildings 
30 161 322 266 100 22 7 1 1 1 

 

Moreover, in our object extraction process, buildings were extracted from DSM in our object extraction process. 

Although visual checks were required to determine the best threshold values to extract buildings, several small noises 

including automobiles were left as unknown objects in the DSM. Semantics, such as road connections, might be one 

of approaches to improve our feature extraction accuracy. Moreover, although shadow detection is required, we can 

focus on a combination of LiDAR data with aerial images.  

In the classification with LiDAR reflection intensity values, it was also difficult to classify small buildings, because 

spatial resolution and intensity feature quantity were insufficient to recognize building types. 

On the other hand, high-rise buildings and large-scale facilities were classified successfully, because area and height 

were reliable data in the classification. As we can partly predict attribute from them, shape and scale might be index 

of first in the classification. 

Although we focused on building roofs, we can focus on an opportunity to acquire more details of buildings with 

aerial LiDAR, as shown in Figure 13. Thus, we would improve our classification with estimations of wall surface 

and smaller object of buildings. 

 

 
Figure 13. Visualized building with point cloud data 



6. CONCLUSION 

 

In this paper, we have focused on an integration of LiDAR with SAR data to achieve the frequent map update with 

attribute data acquisition. Firstly, we generated DSM from point cloud acquired with airborne LiDAR. Secondary, 

the DSM was registered the SAR data to overlay with NRCS calculated from the SAR data. Thirdly, buildings are 

extracted from the DSM. Finally, we classified buildings in the DSM into several clusters. 

In our experiment, we prepared point cloud data acquired with an airborne LiDAR and satellite SAR data acquired 

with ALOS PALSAR in Tokyo. Next, we extracted 911 buildings from DSM. Although our result included noises 

such as bridges and automobiles, we classified buildings into 10 clusters with average NRCS values. In this study, 

we clarified that a combination of airborne LiDAR data and satellite SAR data can extract and classify buildings in 

urban area. In our future works, we will apply the supervised approach to improve our classification accuracy. 
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