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ABSTRACT: Remote sensing technologies obtain spectral and shape properties of ground objects efficiently. These 

useful information is suitable for land use management. The hyperspectral image provides more detail of spectral 

information and there is a great potential to identify species of vegetation using hyperspectral image. Moreover, lidar 

data provides 3-D surface to identify different objects on the ground. Hence, the aim of this study is to integrate the 

hyperspectral imagery and lidar feature for object-based classification. The object-based classification uses image 

segmentation to produce image objects. Different object’s features are calculated from hyper spectral image and lidar 

data for image classification. The proposed scheme includes image segmentation, feature selection, and image 

classification. In image segmentation, the image is segmented into image objects from pixels. According to the 

characteristic of image objects, appropriate features are selected for analysis. In feature selection, nearest neighbor 

method is used to classify the image at image classification step. In the study, the airborne hyperspectral image and 

lidar point clouds are collected by ITRES CASI-1500 and Optech ALTM Pegasus. The confusion matrix is generated 

by ground truth information. The verification includes the comparison between pixel-based and object-based 

classifications, comparison between multispectral and hyperspectral image classifications, and image classification 

with and without lidar features. The experimental results indicate that the fusion of hyperspectral image and lidar 

point clouds may improve the accuracy of image classification. In summary, hyperspectral image provide useful 

spectral information while lidar data provide useful shape information. The integration of these two data may separate 

different land covers from both spectrum and geometric information. 

 

1. INTRODUCTION 

 
Due to the technological and environmental development, human living space is expanding rapidly and globally. 

Hence, land use management is one of the important issues in climate change. The remote sensing technologies obtain 

useful information of land cover effectively. It can be used to understand different land covers for environment 

management. 

 

Hyperspectral image provides detailed spectral information. According to the results of classification provided by 

previous studies (Ifarraguerri and Chang,2000; Shaw and Manolakis,2002; Miao et al.,2006; Prasad and Bruce,2008; 
Xing et al.,2005), hyperspectral image has a great potential to identify species of vegetation using spectral 

information. Moreover, with the development of lidar technology, lidar obtains high density 3-D point cloud rapidly. 

This lidar point clouds provide 3-D surface information efficiently, and this 3-D surface information can use to assist 

the identification of land cover (Gou et al., 2011), because every ground object has its own characteristic of height. 

Therefore, the integration of hyperspectral and lidar is beneficial in land cover classification. 

 

The image classification includes pixel-based and object-based classifications (Myint et al, 2011; Duro et al., 2012; 

Zhang and Xie, 2012). The pixel-based classification analyzes attribute value by pixel. This method does not consider 

the relation between pixels. Therefore, object-based classification is used in this study. Through the image 

segmentation, the related image pixels are combined into image objects. The image object provides not only attribute 

value but factor of shape to identify the class of ground surface (Ke et al., 2010). The aim of this study is to integrate 

the hyperspectral imagery and lidar feature for object-based classification, and discuss effectiveness of data integrate 

and object-based classification. 

  

2. MATERIALS 

 

2.1 Study area 

 

The test area is located in the junction of Chiaya and Kaohsiung in Taiwan and the total area is about 21.4 square 

kilometers. It is a mountainous area which has different types of vegetation, for example, bamboo, fruit, etc. This area 



also covers some villages and some mountainous regions are developed as farming land and orchard.  

 

 
Figure 1. The location of study area (red area)  

 
2.2 Hyperspectral image 
 
The hyperspectral image in this study is collected from ITRES CASI 1500. Total numbers of the image bands are 72 

bands, and spectral wavelength range is from 362.8nm to 1051.3 nm. The preprocessing of hyperspectral image 

includes radiation and geometric correction. In order to get the same ground surface reflectivity of every strip, 

ATCOR4 method is used to the radiation correction, this method consider variety of factors include incident angle, 
terrain effects and atmospheric effects, and decrease effects from these reason. Furthermore hyperspectral image has 

a large number of bands, in order to avoid curse of dimensionality in limited training area, the minimum noise fraction 

transformation (MNF) method is used to reduce dimensions of hyperspectral image. Seven MNF’s bands are selected 

for classification. 
 

2.3 Lidar data 
 

The lidar data is collected by Optech ALTM Pegasus. In order to integrate the lidar and hyperspectral image, lidar is 

interpolated to 2D raster grid. The features of lidar include nDSM, roughness, intensity and echo ratio. In lidar data 

processing, point clouds are classified into ground points and non-ground points for digital terrain model (DTM) and 

the digital surface model (DSM). The DSM can be used in the process of image ortho-rectification, also the 

normalized digital surface model (nDSM) can be calculated by subtracting the DSM from DTM. Furthermore, 

standard deviation of DSM can be treated as surface roughness. For lidar signal features, the echo ratio parameterizes 

multiple reflections, using to represent extension and transparency in vertical, because the region of vegetation has 

high extension and transparency, this feature can be used to identify vegetation (Höfle and Hollaus, 2010). The 

intensity means a relative measure for each lidar signal, this information can use for distinguishing ground object and 

tree species by reflection characteristics (Kim et al., 2009). 

 

3. METHODOLOGY 

 

The work flow of classification is shown as figure 2. First, the purpose in data preprocessing is co-registration, 

therefore, lidar data and hyperspectral image are registered correctly for classification. Second, setting the land types 

for classification, according to simple image interpretation the targets of classification are decided. Then, the 

favorable features are extracted for targets. In object-based classification step include three parts as segmentation, 

training and classification. Finally, the result of classification has analyzed. 

 

3.1 Set targets of classification 

 

According to the characteristics of test area and recognizable features, this area is roughly divided into vegetation and 

non-vegetation. The non-vegetation included bare ground, river and various types of man-made structures. The 

vegetation includes forest, grass and various types of crops. The details of land cover are defined in Table 1. 

 

3.2 Feature extraction 

 

The feature extraction is to produce feature for classification from hyperspectral image and lidar data. Hyperspectral 

image mainly provides spectral feature while lidar data mainly provides terrain feature and lidar signal features. These 

features for classification are shown as Table 2.  
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Figure 2. Workflow 

 

Table 1. Targets of classification 

Vegetation Non-vegetation 

1.Broadleaf forest(forest) 5.Bamboo 8.Water 12.Watercourse 

2.Grass 6.Fruit tree(fruit) 9.Road 13.Bare ground 

3.Tea plantation(Tea) 7.Areca plantation(Areca) 10Greenhouse 14.Concrete 

4.Other crops(Farm)  11.Building 15. School Playground (School) 

 

Table 2. Features for classification 

Data Feature type Feature Description 

Hyperspectral 

image 
Spectral feature 

MNF 
Separate noise and signal in image, also reduce the data 

dimensions of hyperspectral image 

NDVI Determine the amount of vegetation. 

WBI Determine the moisture content of the state canopy. 

EVI Determine the amount of vegetation. 

Lidar data 

Terrain feature 

nDSM 
Height of ground surface, can used to distinguish surface 

objects. 

Roughness 
Point cloud dispersion degree at direction of elevation, also 

indicates the complexity of ground surface. 

Lidar feature 

Intensity Energy of the laser echo 

Echo ratio 
The ratio of also indicates the complexity of vertical 

direction. 

 

3.3 Pixel-based Classification 

 

In pixel-based classification, the Maximum likelihood was used in image classification. The pixel-based 

classification was according the statistics and features of pixel to identify targets. Because pixel-based analyzed 

property value individually in pixel level, leading to the result of pixel-based classification had salt and pepper 

phenomenon obviously. Therefore, In order to reduce salt and pepper phenomenon, the result of pixel-based 

classification was processed by majority filtering. 

 

3.4 Object-based Classification 

 

In the reality space, the ground surface object was composed by number of pixels. In object-based classification, the 

segmentation of image aggregates the pixels to image object according to similarity between pixels. For image object, 

it has both attribute and geometry features, e.g. shape and texture. After segmentation the Nearest neighbor was used 

to process the object-based classification. The bottom-up method is used for segmentation. This method uses 

homogeneity index to obtain object. The scale parameter is to control the size of object, and the details of image object 

are affected by scale parameter.  

 

4. EXPERIMENTAL RESULTS 

 

The experiments include four types of classifications. These are object-based multispectral image classification, 

pixel-based hyperspectral image classification, object-based hyperspectral image classification, and integration of 

hyperspectral and lidar object-based classification. These classification methods used same training and test areas for 



comparison. The training area and test area are manually selected from 50cm aerial orthoimage. The results are 

presented by overall accuracy and kappa of classification. This study used commercial software, i.e. eCognition
TM

 8.7 

to perform object-based classification. The pixel-based maximum likelihood classification was implemented by 

ENVI
TM

. Table 3 showed the comparison of these methods.  
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Figure 3. results of classification 

 

4.1 Multispectral vs. hyperspectral image classifications 

 

In this part, Multispectral and hyperspectral images were classified by only spectrum feature. The spectrum feature of 

multispectral image included four bands, i.e. blue band (450nm), green band (547nm), red band (644nm), near 

infrared band (780nm) and calculated NDVI, EVI by these four bands. According to the value of spectra and MNF in 

figure 4, the multispectral image had lower value dispersion degree than hyperspectral MNF image at vegetation. 

Therefore in Figures 3a and 3c could find the classification in multispectral image had more error than the 

classification in hyperspectral image at vegetation. In Table 3, the overall accuracy of result of hyperspectral image 

classification is more accurate than multispectral image classification. 

 
Figure 4. Sperability of landcovers by spectral and MNF 

 

Table 3. Comparison of different approaches 

Data multispectral image hyperspectral image hyperspectral image 
hyperspectral image 

and lidar 

Approach object-based pixel-based object-based object-based 

Kappa 0.5062 0.8010 0.9064 0.9554 

OA 54.72% 81.77% 91.40% 95.50% 

 

4.2 Pixel-based vs. object-based classifications 

 

The results of pixel-based and object-based classification of hyperspectral image were compared in this section (see 

figure 5). Because the pixel-based classification classified the land cover using each pixel. The result of pixel-based 

classification occurred salt and pepper phenomenon significantly. On the other hand, the object-based classification 

classified the land cover using segmented object. The result showed complete region, e.g. for the fruit plantation and 

areca plantation in object-based are more complete than pixel-based. Moreover, the pixel-based classification is 

mixed with other things like grass or broadleaf tree. According to classification accuracy, object-based classification 

is more helpful than pixel-based classification. 



4.3 Image classification with and without lidar features 

 

According to figure 4, tree and areca had similar spectral feature. This phenomenon leaded some misclassifications 

(see Table 4) like fruit, areca, bamboo and forest etc. The lidar data provide 3D structural features like height and 

complexity (roughness) for classification. The combination of hyperspectral image and lidar improved the accuracy 

of classification (see Table 5). 

 

   
a. Orthophoto b. Object-based classification c. Pixel-based classification 

Figure 5. Comparison of object-based classification and pixel-based classification 

 

Table 4. Error matrix for result of hyperspectral object-based classification without lidar data 
User \ Reference water watercourse road farm bareground greenhouse fruit areca tea bamboo forest concrete building school grass

water 3398 81 0 0 0 0 0 0 0 0 0 0 0 0 0

watercourse 12 2990 0 0 0 0 0 0 0 0 0 0 0 0 0

road 0 0 2580 0 88 81 0 0 0 0 0 26 58 0 0

farm 0 0 8 2996 54 0 148 0 0 0 258 0 2 55 235

bareground 0 97 36 0 2750 0 6 0 0 0 0 0 0 5 0

greenhouse 0 11 0 0 0 1810 0 0 0 0 0 3 6 0 0

fruit 0 0 0 0 0 0 2290 38 0 0 0 0 0 0 0

areca 0 0 1 26 145 0 0 2878 32 0 151 0 0 0 0

tea 0 0 0 0 0 0 0 0 3127 0 5 0 0 0 0

bamboo 0 0 19 0 12 1 259 364 0 2971 369 0 0 0 1

forest 0 0 3 0 16 0 269 0 0 294 5384 0 0 0 79

concrete 0 0 19 0 0 0 0 0 0 0 0 504 27 0 0

building 0 0 11 0 0 0 0 0 0 0 0 0 1373 0 0

school 0 0 3 0 0 0 0 0 0 0 0 0 3 573 0

grass 0 0 0 179 3 0 0 0 0 0 0 0 0 0 2845

unclassified 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0

Sum 3410 3179 2680 3201 3068 1892 2972 3280 3159 3265 6167 533 1490 633 3160

Producer Acc. 0.9965 0.9405 0.9627 0.9360 0.8963 0.9567 0.7705 0.8774 0.9899 0.9100 0.8730 0.9456 0.9215 0.9052 0.9003

User Acc. 0.9767 0.9960 0.9107 0.7977 0.9502 0.9891 0.9837 0.8902 0.9984 0.7435 0.8907 0.9164 0.9921 0.9896 0.9399

Overall Acc.

K

0.9140

0.9064  
 

Table 5. Error matrix for result of hyperspectral object-based classification with lidar data 
User \ Reference water watercourse road farm bareground greenhouse fruit areca tea bamboo forest concrete building school grass

water 3391 0 0 0 0 0 0 0 0 0 0 0 0 0 0

watercourse 9 3082 0 0 0 0 0 0 0 0 0 0 0 0 0

road 0 0 2609 0 23 0 0 0 0 0 0 33 129 0 0

farm 0 63 7 3022 3 0 0 0 0 0 14 0 2 0 45

bareground 10 34 9 0 2939 81 0 0 0 0 0 0 3 61 0

greenhouse 0 0 0 0 0 1811 0 0 0 0 0 0 0 0 0

fruit 0 0 0 0 0 0 2947 0 0 0 0 0 0 0 5

areca 0 0 0 0 83 0 0 3092 97 0 1 0 0 0 0

tea 0 0 0 0 0 0 0 0 3037 0 0 0 0 0 0

bamboo 0 0 30 0 7 0 0 104 0 3184 377 0 0 0 0

forest 0 0 0 0 0 0 20 84 0 81 5780 0 0 0 0

concrete 0 0 14 0 0 0 0 0 0 0 0 493 34 0 0

building 0 0 0 0 0 0 0 0 0 0 0 0 1304 0 0

school 0 0 14 0 0 0 5 0 0 0 0 7 7 572 0

grass 0 0 0 179 0 0 0 0 25 0 0 0 0 0 3110

unclassified 0 0 0 0 13 0 0 0 0 0 0 0 11 0 0

Sum 3410 3179 2683 3201 3068 1892 2972 3280 3159 3265 6172 533 1490 633 3160

Producer Acc. 0.9944 0.9695 0.9724 0.9441 0.9580 0.9572 0.9916 0.9427 0.9614 0.9752 0.9365 0.9250 0.8752 0.9036 0.9842

User Acc. 1.0000 0.9971 0.9338 0.9575 0.9369 1.0000 0.9983 0.9447 1.0000 0.8601 0.9690 0.9113 1.0000 0.9455 0.9384

Overall Acc.

K

0.9590

0.9554  
 

5. CONCLUSIONS 

 

According to experimental results, hyperspectral image provides detailed spectrum to identify different vegetations 

when compared to multispectral image. For vegetation which have similar spectral features, we used lidar’s surface 

features to separate vegations. Therefore, the classification with lidar data classified the type of vegetation more 

accurate. Moreover, the result of object-based classification is a more accuracy than tranditional pixel-based 

classification. Hence, the object-based classification is more appropriate for the land cover management. 
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