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ABSTRACT: Combined usage and analysis of images from different sensors for various applications, including 
disaster monitoring, often needs first an image co-registration. Co-registration is based on automated matching of 
corresponding image features (e.g. just 10-40) and becomes very difficult when the images differ a lot. Perhaps the 
most difficult case is that of co-registering optical and SAR images, while also multispectral images can vary a lot. In 
difficult co-registration cases, the point correspondences are mostly wrong. Thus, an additional problem is to find and 
automatically eliminate matching errors. In this paper, we present and compare various matching methods and show 
some benefits when combining them. The two main methods used include Mutual Information (MI) and a Discrete 
Fourier Transform method (FTCC). We extend the methods to also estimate the matching quality and exclude 
blunders, showing also results on that. Additionally, in one test a previously used Least Squares Matching (LSM) 
method was employed. Our test data include SAR and optical images, from the Tohoku Earthquake and Tsunami, 
2011 in Japan and a region in Thun, Switzerland. Since there was no ground truth, the results for Tohoku were 
checked visually. As an extra test dataset we use very different AVHRR multispectral images, which are already co-
registered. By introducing known geometric distortions we can perform quantitative evaluations with this data. Both 
MI and FTCC show a quite robust performance, with FTCC showing generally more blunders, but, when points are 
correct, slightly better accuracy. Matching quality evaluation and less matching method combination reduce the 
number of blunders very significantly to almost complete elimination. 
 
1. INTRODUCTION AND INPUT DATA 
 
The RAPIDMAP project (Cho et al., 2014) aims at integrating Remote Sensing (RS) and Geographic Information 
Systems (GIS) for resilience against disasters. In case of disasters and hazard monitoring, rapid mapping of the 
affected areas using RS and GIS is of great importance. Moreover, the continuous increase of imaging satellite sensors 
has necessitated the combined usage and analysis of such sensor data, often after an image co-registration. Co-
registration has been an open task in the past and there is still some on-going research (see some references in Section 
2.1). Here, we present a comparison (and partly combination) of three methods matching very different images and 
methods for matching blunder detection. 
 
The datasets used include three cases. The first case is the Tohoku area in Japan, which was hit by the 2011 Tsunami 
on March 11th. The images acquired consist of pre- and post- disaster images. From the whole image area, here only a 
part was used, covering approx. 11.5 x 6 km and located close to the Sendai airport (Figure 1). The images were 
resampled (where needed) to a common GSD of 5m. A second dataset, located close to the city of Thun (Switzerland), 
with substantial elevation differences and many land-cover classes, is further used to evaluate the methodology. An 
overview of the SAR/Optical images for the first two datasets is given in Table 1. 
 

Table 1. Overview of the SAR and optical data used. 

Satellite / Sensor Date GSD Wavelength 

Tohoku 

SAR TerraSAR-X 

21.09.2008 5 m 

X-band, 3 cm 
20.10.2010 5 m 

12.03.2011 5 m 

23.03.2011 5 m 

Optical FORMOSAT-2 
11.03.2011 2 m 

0.45 - 0.90 μm (PAN+NIR) 
19.03.2011 2 m 

Thun 
SAR TerraSAR-X 10.2008 3 m X-band, 3 cm 

Optical ALOS/PRISM 1.2006 2.5 m 0.52 - 0.77 μm (PAN) 
 
The third dataset used consists of images from the Advanced Very High Resolution Radiometer (AVHRR) sensor on 
board of satellite NOAA-17. The images were taken on 08.02.2008 and contain 5 channels (see Table 2) with many 
radiometric differences. The images were orthorectified with the same DEM and orientation and the GSD is 1 km. 



Here, 4 channels were used for co-registration, with channel number 2 as matching reference. Since channel 1 is very 
similar to channel 2 it was left out of the evaluation. 
 

Table 2. The AVHRR channels’ wavelengths. 

Channel 1 2 3A 4 5 

Wavelength [μm] 0.58-0.68 0.725-1.0 1.58-1.64 10.3-11.3 11.5-12.5 
 

 
(a) 

 
(b) 

 (c) 

 (d) 
Figure 1. Region close to the Sendai airport, which was severely hit by the 2011 Tsunami: (a) is the  
FORMOSAT-2 (©  NSPO) image and (b) the TerraSAR-X image, taken just after the tsunami. In (c) the 
ALOS/PRISM image of the region close to Thun and (d) channel 2 of the AVHRR sensor. 
 
2. METHODOLOGY 
 
2.1 Matching Methods and Metrics Used 
 
Matching multi-modal images is a task, which cannot be solved with traditional matching methods. Thus, methods are 
being aimed at that best suit images with different intensities. Three approaches were used for this paper. The 
matching procedure in all following methods can be described as following: small samples (patches) of the images are 
selected and then their relative transformation is searched for in order to have a match. This approach belongs to the 
intensity-based methods, which compare intensity patterns. Based on these correspondences between the centres of the 
patches a global geometrical transform can be computed. One basic parameter that has to be set is the size of the 
patches, which differs in each method and dataset. 
 
2.1.1 Mutual Information (MI). Mutual Information (MI) methods for registering multi-modal images are 
mentioned in Inglada and Giros (2004) and Reinartz et al. (2011). MI is an entropy-based metric that is connected to 
information theory and indicates the statistical dependence between two random variables. This metric is used to 
maximize the relative intensity values of coincident pixels, so in this case it is suited for images with different 
intensities. The implementation of Mattes MI (Mattes et al., 2001) included in the ITK Toolkit (http://www.itk.org) is 
used in this work. The metric is further used with a one-plus-one revolutionary optimization module (Styner et al., 
2000). This method uses a shift transformation model. Matching is with subpixel accuracy. 
 
2.1.2 Fourier Transform Cross-Correlation (FTCC). This method uses a single-step discrete Fourier transform 
(DFT) algorithm, which computes the cross-correlation in the frequency domain. Using DFTs leads to gains in 
computational speed and memory requirements in comparison to the usual FFT approach, while in this 
implementation one can use large oversampling factors in order to achieve sub-pixel accuracy,. By increasing the 
resolution of the patches to match by a factor of k (here k=100 was used), the maximum correlation can be located at a 
higher resolution, with a precision of 1/k pixels (Guizar-Sicairos et al., 2008). This method uses a shift transformation 
model. 
 
2.1.3 Least Squares Matching (LSM). LSM based on the Adaptive Least Squares Correlation (Gruen and 
Baltsavias, 1988) is a technique optimized for image matching by computing local geometrical image shaping (in this 



case an affine transformation) during least squares iterations. LSM can be very accurate, but is slow and requires good 
starting approximations (in the order of a few pixels). Because of the big radiometric differences of the images to 
match with this metric, the thresholded image gradients were computed and used for matching. In previous work 
(Soukal and Baltsavias, 2012), quality criteria for every match point were determined and statistical measures were 
used to evaluate them in order to identify the wrong matches. LSM is used only with the AVHRR dataset. 
 
2.2 Filtering of the Matches 
 
During matching, it is expected that in some cases the matching will fail, especially when the images differ a lot. Thus, 
it is necessary to identify and remove the blunders. MI and FTCC have been extended in order to extract some quality 
criteria for each match point and eliminate blunders. 
 

 
Figure 2. X-shifts of the matching regular grid (left), the average x-shifts computed for every point in its 9x9 
neighbourhood (centre) and the final weight for local x-shift changes computed for every point (right), based on the 
difference of its x-shift from its average local x-shift. 
 
Here, the following procedure has been used to determine quality values for MI and FTCC: 
1. Local shifts are taken into account. Based on the shifts along x- and y-directions (Figure 2, left), an average x- and 

y-shift is computed around a 9x9 neighbourhood of each point (Figure 2, centre) and subtracted from its x- and y-
shift. Thus, we can detect points, with different shifts than their neighbourhood. The final differences are 
normalized between 0 and 1, by dividing the square of the differences with the maximum difference squared 
(Figure 2, right). By averaging both weights for x- and y-shifts, the final weight is computed. 

2. Secondly, the normalized cross-correlation (NCC) in the gradient domain is computed and used as a quality value. 
By taking a window and centring it at the matched points in the gradient images and sliding it in both x- and y-
directions the NCC is computed for every pixel in a window. The size of the window depends on the matching 
window (here half its size). First, the value of NCC at the match point is divided by the maximum NCC value 
within the window and this ratio is stored. We also keep the location (in x and y) of the maximum NCC value 
with respect to the match point. 

3. Another criterion for evaluating the matches is the standard deviation of the intensities within the patches. The 
assumption behind this is that windows that have a large standard deviation will have greater contrast and thus 
matching would be more successful, compared to images with low standard deviation (little to no texture). These 
values are also normalized from 0 to 1, by dividing all with the maximum value of standard deviation. 

4. As a final quality criterion the matching criterion of every method can be considered. Here, only the maximum 
value of MI of the matched patches, normalized by dividing with the highest value, is used. 

 
Finally, the criteria that are used for filtering are: 
1. x-shift (from approx. location – not normalized) 
2. y-shift (from approx. location – not normalized) 
3. Score from shifts (normalized from 0 to 1) 
4. Ratio of centre point NCC to maximum NCC within the window (typical values in the range from 0 to 1) 
5. x-coordinate of maximum NCC (difference from patch centre – not normalized) 
6. y-coordinate of maximum NCC (difference from patch centre – not normalized) 
7. Standard deviation of optical patch (before matching – normalized from 0 to 1) 
8. Standard deviation of SAR patch (before matching – normalized from 0 to 1) 
9. (Optional) Mutual Information value (normalized from 0 to 1) 
 
The filtering procedure uses the quality criteria described in this section and is applied in the following way. For each 
matched point we append into a vector all the quality criteria. Under the assumption that there are some correct 
matches, their quality criteria should share similar values, so there will be an area in the vector space that is dense, as 
these points would create a cluster (Figure 3). This cluster should be the largest in the vector space, but it is not 
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necessary that it contains more than half of the points. The space, in which the vector endpoints are, gets sparser as the 
dimensionality of the vectors grows (when using more quality criteria) and it is easier to find a cluster. If the wrong 
points have random quality criteria it is more likely that they will be lying far away from other points. So in order to 
find the good matches we compute from every point in this space, its Euclidean distance to every other point and sum 
up all the distances. Points with the lowest sum of distances will indicate that they are close to many other points, 
while a larger sum of distances will indicate probable wrong matches. For the criteria with normalised values (0,1), we 
subtract from the values their mean (to centre them) and multiply by the mean standard deviation of the first two 
criteria. Thus, all criteria cover approximately the same value range in the vector space, with pixels units.  
 

 
Figure 3. Scatter plots with only two dimensions each time in the “quality value” space, which show the locations with 
high point density (left and centre). On the right, the histogram of the sums of the distances.  
 
The sums of the distances are sorted. Figure 3 (right) shows their histogram with the best points on the histogram left. 
The selection of good points is done manually by giving the number or percentage of the best points to keep. This 
threshold is application and image dependent. In the future, we plan to automate its selection. 
 
3. RESULTS 
 
3.1 Japan Dataset 
 
For this dataset, the MI and FTCC methods were used. For this experiment a 301x301 sized window was centred at 
the points to be searched and for covering the whole image a regular grid was used with an interval of 75 pixels. The 
input data given in Table 1 are sorted into 4 pairs. The first two pairs consist of the FORMOSAT-2 image before the 
disaster combined with the SAR pre-disaster images (i.e.21.09.2008 and 20.10.2010) respectively. The third and 
fourth pairs consist of the FORMOSAT-2 image after the tsunami and the two post-disaster TerraSAR-X images (i.e. 
12.03.2011 and 23.03.2011). 
 
3.1.1 Comparison of methods before and after filtering. First of all, before performing any filtering of the 
matches and to be able to make comparisons and evaluate the results, the matches were manually checked by visual 
interpretation (with an accuracy of 1-3 pixels) and classified to correct and false matches. The summary of the results 
is given in Table 3 and a visual comparison of the computed shifts for pair 4 in Figure 4. Pair 3 has the biggest number 
of correct matches. This is due to the larger flooded area (see dark areas in Figure 1 (a) and (b)), which makes the 
contrast of features protruding from the flooded area easier to match. Due to some problems at the borders of the 
images, some numerical problems occurred and the matches were discarded. Points, which were matched correctly in 
both methods, were further used to check the consistency of both methods. In Table 4 the filtering performances are 
given, including the manually defined threshold, the number of points left after filtering and how many of the points 
are correct, based on the visual check. The filtering results of pair 4 are shown in Figure 4 (right part). The 
performance of this filtering leads to 90% or higher correct points. 
 

Table 3. Summary of manual visual evaluation of the matches for all four Japan pairs. 

Pair 
Initial 
points 

MI matches 
without numerical 

problems 

FTCC matches 
without numerical 

problems 

MI correct 
matches 

FTCC correct 
matches 

Common 
correct matches 

1 324 323 298 265 172 149 

2 324 321 296 254 164 138 

3 324 312 323 274 297 270 

4 324 312 315 275 183 166 
 

-200 -150 -100 -50 0 50 100 150

-500

-400

-300

-200

-100

0

100

1.x-shift

4.
N
C
C
 r
at

io

Scatter of 1. vs 4.

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20

-500

-400

-300

-200

-100

0

100

3.Shift score

4.
N
C
C
 r
at

io

Scatter of 3. vs 4.

2 4 6 8 10 12 14

x 10
5

0

50

100

150

200

250

300

350

400

Sum of distances

Histogram of the sum of distances



   
Figure 4. The shifts computed for pair 4 in the area given in Figure 1. From left to right: MI and FTCC shifts before 
filtering, MI and FTCC shifts after filtering. Scale of vectors in the upper left corner. 
 
Table 4. Numerical evaluation of the points left after the filtering and the parameter (% of points to keep), which was 
manually set. Correct points are estimated based on visual check. 

Pair 
MI points 

after filtering 
% of points 

to keep  
Correct filtered 
points (no. / %) 

FTCC points 
after filtering 

% of points 
to keep  

Correct filtered 
points (no. / %) 

1 242 75% 230 / 95% 167 56% 163 / 98% 

2 241 75% 227 / 94% 160 54% 151 / 94% 

3 265 85% 259 / 98% 284 88% 280 / 99% 

4 262 84% 254 / 97% 176 56% 168 / 95% 

 
3.1.2. Combination of Methods. Another way to evaluate the relative (and partly absolute) correctness of the two 
methods is to compare the results of the methods at the same matching points and keep as good points those with 
small differences. This second filtering can be performed even to the original matching results, though it makes more 
sense to apply it after the filtering using the quality criteria. A comparison of MI and FTCC after the first filtering is 
shown in Table 5. Since after the first filtering, a few blunders still exist we give in Table 5 the median values of the 
differences and their median absolute deviation from the median (MAD) (multiplied by 1.4826 for normal distribution 
to obtain a consistent estimate of the standard deviation). We discard a point as blunder (in the 2nd filtering), if 
abs(point(x)-median(x)) > 3*1.4826*MAD(x) (and similarly for y). The remaining points (Table 5) were all classified 
as correct based on the visual check. The difference of these points can vary up to 2-3 pixels. 
 
Table 5. Median difference and MAD (multiplied by 1.4826) between the FTCC and MI methods derived from the 
filtered matches. 

Pairs 
Median difference 1.4826*MAD No. of points after / before 

2nd filtering x y x y 

1 -0.15 0.46 1.00 0.79 117 / 123  

2 -0.51 0.56 0.92 0.97 115 / 128 

3 -0.58 0.08 0.59 0.43 251 / 263 

4 -0.93 -0.12 1.05 0.96 149 / 161 
 
3.2 Thun Dataset 
 
The Thun dataset is not related to any disaster, but rather includes a larger area than for the Sendai region. The 
matching window used in this case is 401x401 pixels and the density of the regular grid is 100 pixels. Out of the total 
number of 2209 points to match, we use the filtering procedure to select the best matches (Figure 5). No visual check 
was performed for this test, due to the high number of points.  For the MI method a threshold of 70% was used and for 
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FTCC 60%, which results to 1519 and 1289 matched points respectively. Out of these points, 956 were matched by 
both methods, and among them 651 points (68%) differ less than 2 pixels and 793 points (83%) differ less than 4 
pixels. Nevertheless, after the first filtering some wrong matches still exist, mostly in the case of FTCC. By combining 
these two methods, we can increase the certainty of matching correctness, and also perform a second filtering 
excluding points where results differ a lot (see FTCC blunders with very different MI results in Figure 5).  

 
Figure 5. Filtered matches of the two methods, MI (left) and FTCC (right). Scale of vectors in the upper left corner. 

 
3.3 AVHRR dataset 
 
The AVHRR dataset is used to make some quantitative numerical evaluations, since its channels are almost co-
registered, thus can be used quasi as reference. In some cases, between some channels small shifts are observed with 
all three evaluated methods. These shifts are stored and used below, as initial shifts of the “co-registered” images. The 
search window used is 149x149 pixels for MI and FTCC and 41x41 for LSM. The grid interval is 50 pixels and is 
common for all three methods. For matching, thresholded image gradients were used, after enhancing the contrast, 
since they led to more correct matches. Matching these images is a task that differs from the previous tests because the 
image scale is very coarse and there are no linear features, such as rivers and roads. Up to now, point correspondences 
were searched for exactly at the same location in both images to be matched. For the AVHRR dataset, we introduce a 
known similarity transformation of the regular matching grid (with origin the upper left image corner) and search for 
correspondences on this distorted grid (Figure 6), i.e. we change the starting positions of the matching. If the matching 
is correct, then the estimated shifts should eliminate the introduced error and permit the estimation (recovery) of the 
similarity transformation parameters (Figure 6). Before computing the transformation, we subtract from the matching 
results the initial shifts of the co-registered images mentioned above. This procedure can check the matching accuracy, 
also in dependence of the quality of the starting match positions. After matching, the first filtering was performed 
forMI and FTCC, however, only a few points were rejected. For LSM, points were excluded, if they needed more than 

 
Figure 6. The inserted distortions of the grid in the AVHRR dataset (left) and the recovered distortions by MI after 
matching channels 2 and 5 (here without filtering). 
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25 iterations in the least-squares adjustment. Finally, based on the filtered results, the inverse transformation is 
estimated with RANSAC, which reduces the effect of blunders that remained after filtering. The numerical results of 
the transformation estimated can be found in Table 6. LSM has clearly worse performance than MI and FTCC, while 
the latter is better than MI regarding the estimation of the shifts. With both methods, the estimated shifts of the 
similarity transformation were never wrong more than 0.2 pixels. 
 

Table 6. True and recovered transformation parameter values for three image pairs after the first filtering and 
RANSAC. 

Channel Pairs 2-3A 2-4 2-5 
 Transformation 

parameters 
True 

values 
Recov. 

MI 
Recov. 
FTCC 

Recov. 
LSM 

Recov. 
MI 

Recov. 
FTCC 

Recov. 
LSM 

Recov. 
MI 

Recov. 
FTCC 

Recov. 
LSM 

x-shift [px] 3.00 2.80 2.92 2.81 3.20 2.98 2.27 3.14 2.99 2.39 

y-shift [px] -2.00 -2.02 -1.85 -1.81 -1.92 -1.97 -1.69 -1.92 -1.97 -1.62 

rotation [deg] 0.40 0.40 0.39 0.37 0.40 0.40 0.32 0.40 0.40 0.31 

scale 1.000 1.000 1.001 1.000 1.001 1.000 1.000 1.000 1.000 0.999 
 
4. DISCUSSION AND CONCLUSIONS 
 
In this paper we compared three methods for image co-registration and also produced some results with a combination 
of MI and FTCC. We introduce a new approach in performing a filtering of the matches to exclude blunders, which 
delivers good results, when compared to manually checked points.  We have performed three tests involving very 
different satellite images, having various GSDs (from 2m to 1km). Test results showed that both MI and FTCC, using 
large matching patches, are quite insensitive to image differences and do not require good starting approximations. 
LSM, using smaller patches and without filtering, performs clearly worse. The computation time of MI and FTCC is 
similar, typically 1min for 300 points (using large matching patches and MatLab code). FTCC usually produces more 
and larger blunders, however due to their large size, they can be easily detected and excluded. FTCC also seems to 
produce slightly more accurate results than MI, although a possible subpixel accuracy could not be visually checked. 
In the Tohoku dataset, filtering produced results that were 94% to 99% correct, after visual control. This can be further 
improved by comparing the results of the two methods and keeping only points with small differences. A quantitative 
evaluation was made with the AVHRR images, by estimating after matching an a priori introduced transformation, 
showing a good estimation of the transformation parameters for both MI and FTCC. The procedures are automated, 
with the exception of a manually set threshold. The methods can be favourably used in co-registration of very different 
images for various applications, including rapid disaster mapping. Future work will concentrate on the improvement 
of filtering. 
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