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ABSTRACT: Species distribution modeling (SDM) is commonly applied to analyze the relationship between species 

and environment and predicting its distribution.  Japanese elaeocarpus (JE), red-stripe rhododendron (RSR) and Chinese 

guger-tree (CGT) widely distributed in central Taiwan were chosen as target species.  JEs are a xeric pioneer and 

usually grow on uplands with strong sunlight and low soil moisture.  RFs have clumpy distribution and form pure 

stands and can grow on well-drained uplands with sufficient sunlight and acidic soils.  CGTs are shade-tolerant and 

incline to grow in lowlands with wetter soils but need moderate sunlight and have scattered distribution.  Hence, the 

study attempted to develop the SDMs based on terrain-related variables to predict the suitable habitats of these species 

in the Huisun area in central Taiwan.  The base model included elevation, slope, and terrain position and expanded 

models included the three variables plus topographic wetness index (TWI), and these models were built by maximum 

entropy (MAXENT), decision tree (DT), and BIOCLIM algorithms.  The accuracies of the expanded models with 

additional TWI were better than that of the base model, regardless of which algorithms being used.  The MAXENT and 

DT models were equally matched in predictive accuracies, and outperformed BIOCLIM.  More importantly, the larger 

the TWI value, the higher likelihood a CGT tree has to grow at a given location, and the opposite is true for either RSR 

or JE tree.  Consequently, this outcome shows that these species have the above-mentioned ecological traits and agrees 

with our observations from field surveys.  The rise in accuracy is relatively limited although this proxy can improve the 

predictive ability of these SDMs.  Therefore, the proxy of solar irradiance (SIR) and high-resolution DEM derived from 

LiDAR will be incorporated into SDMS so that their predictive ability can be substantially improved. 
 

1. INTRODUCTION 

 

Species distribution models (SDMs) are used to gain ecological and evolutionary insight and to predict distribution 

across landscapes, sometimes requiring extrapolation in space and times (Elith and Leathwick, 2009).  SDMs can 

provide a measure of a species’ occurrence likelihood in areas not covered by biological surveys and consequently 

becomes an indispensable tool to conservation planning and forest management (Elith et al., 2006), and they have 

become increasingly important in spatial ecology since the latter half of the 20th century (Guisan and Zimmermann, 

2000).  Broadly speaking, the applications of SDMs usage can be split into two main frames in which one of them is for 

explanation and the other is for prediction.  Each coin has two sides, many studies have strikingly focused on causal 

drivers of species distribution, and these studies with such purpose are intensely depending on the modeling algorithms 

and spatially extensive environmental data (Hamazaki, 2002), and that is also critical to the selection of predictors and 

models in addition, while others are for prediction which was made to new sites within the known range of 

environments sampled by the training data and to that new and unsampled geographic region within future time or past 

climate. 

 

Ecological parameters (e.g. rainfall or sunlight) that are causal factors for species distribution are usually used to predict 

the spatial pattern of species.  However, data for such ecological factors are expensive or even difficult to collect and 

are usually collected from a limited number of stations or field-survey samples.  Terrain-related variables are used as 

proxies of ecological factors in the study since data for them can be easily obtained by remote sensing (Guisan and 

Zimmermann, 2000).  Topographic wetness index (TWI) is a very useful tool in the context of hydrologic simulation 

(Izham et al., 2011).  It is one kind of measurements that can represent and control the local situation of topography on 

hydrological processes.  These processes influence the dynamic of surface and stream flows, and are highly related to 

soil moisture, which is an obvious candidate for being a controller of local plant growth (Moeslund et al., 2013).  

However, data for soil moisture are expensive to collect and are usually collected with insufficient number.  Therefore, 



this study tried to include TWI, the proxy of soil moisture, as a new predictor into the model in order to improve the 

performance of SDMs. 

 

The study aimed to evaluate the effects of TWI on the predictive performance of species distribution models.  It 

developed the base model including elevation, slope and terrain position and the expanded model including the same 

three variables plus TWI for predicting the suitable habitat of three species in the Huisun area in central Taiwan.  These 

models were built by three algorithms of maximum entropy (MAXENT), decision tree (DT), and BIOCLIM.. The study 

compared the predictive performances between the base model and the expanded model to determine the effectiveness 

of TWI for improving the performance of SDMs. 

 

2. MATERIALS AND METHODS 

 

2.1. Study Area 

 

The study area is a rectangular area, which encompasses Huisun Experimental Forest Station (HEFS) with irregular 

shape (7, 477 ha), and it has a total area of 17,136 ha.  The HEFS is located in the 24°2 –́24°5  ́N latitude and 121°3 –́

121°7  ́ E longitude (figure 1).  The entire study area ranges in elevation from 454 m to 2,418 m, and its climate is 

temperate and humid.  The environment has nourished a wide variety of plant species more than 1,100 and is a 

representative forest in central Taiwan.  The study area comprises five watersheds, including two larger watersheds, 

Kuan-Dau at west and Tong-Feng at east.  All of the tree samples (three species) were collected from the Tong-Feng 

and Kuan-Dau watersheds in HEFS by using a GPS.  

 

 
Figure 1 Location map of the study area. 

 

2.2. Target Species  

 

The study chose Japanese elaeocarpus (Elaeocarpus japonicas, JE), red-stripe rhododendron (Rhododendron 

formosanum, RSR) and Chinese guger-tree (Schima superba, CGT) as target species in order to examine the 

relationships between their ecological characteristics and environment.  JEs are a xeric pioneer, usually grow on 

uplands with strong sunlight and low soil moisture, and are often accompanied by pine and RSR species.  RSRs have 

clumpy distribution and usually form pure stands, can grow on well-drained uplands with sufficient sunlight and acidic 

soils, and are often accompanied by pine and JF species, but stay at shrub pattern due to their low growth rate that 

cannot compete with other trees.  CGTs are shade-tolerant evergreen trees and incline to grow in lowlands with wetter 

soils but still need moderate sunlight and have scattered distribution. 

 

2.3. Data Processing 

 

In situ RSR, CGT and JE samples were collected by using a GPS linked with a 5-m expandable rod and a laser range 

finder, and then performed a post-processed differential correction that makes them have an accuracy of sub-meters.  



The dataset was eventually converted into ArcGIS shapefile format for later use.  The sample sizes of the three tree 

species are shown in table 1.  Both digital elevation model (DEM) of 5 m resolution and orthophoto base maps 

(1:10,000) were also collected.  Elevation and slope were derived from DEM by ERDAS Imagine software module.  

Digitized main ridges and valleys in the study area were used together with DEM to generate terrain position layer.  

 

Table 1 The sample sizes of the three tree species  

Watershed/Species No. of JEs No. of RSRs No. of CGTs 

Tong-Feng  126 118 130  

Kuan-Dau  103 61 64 

Total 229 179 194  

 

The calculation of TWI usually uses the gridded DEM and formula as TWI=ln(α/tanβ), where α is the upslope 

contributing area per unit length of contour, and β is the topographic slope of the cell.  The value of TWI depends on 

the algorithm to calculating α and estimation of tanβ (Qin et al., 2007).  Here D8 algorithm was adopted and 

implemented in ArcGIS 10.0 software to compute α.  D8 algorithm is one of Single Flow Direction (SFD) that assumes 

all water from a pixel should flow into one and only one neighboring pixel, which has the lowest elevation 

(O’Callaghan and Mark, 1984).  TWI was computed based on the formula by using Map Algebra tool/Raster Calculator 

in ArcGIS.  

 

All of these data layers were geo-referenced to the coordinate system, TWD67 (Taiwan Datum, spheroid: GRS1967) 

and transverse Mercator map projection over two-degree zone with the central meridian 121E.  There were a total four 

variables, elevation, slope, terrain position, and TWI used in the predictive models.  

 

2.4. Sampling Design and Model Development  

 

The study took a split-sample approach to develop and evaluate predictive models.  One sampling design (SD) was 

created for model development and evaluation through different combinations of tree samples taken from two 

watersheds in the HEFS.  The study merged the tree samples collected from the two watersheds into a dataset and 

separate the dataset into two subsets, the first subset containing two-thirds of the dataset (2/3) for model calibration and 

the second subset containing the remaining (1/3) for model evaluation.  The base model was built with three predictor 

variables (elevation, slope, terrain position) and the expanded model was built with the three variables mentioned earlier 

plus TWI variable.  These two types of SDMs were developed by maximum entropy (MAXENT), BIOCLIM, and 

decision tree (DT) for predicting the distribution of the three species.  

 

2.5. Model Evaluation  

 

Model validation (evaluation) can be done by split-sample validation approach, as mentioned previously.  Predictions of 

each model were compared to the validation data set to form a confusion matrix, from which Cohen’s Kappa was 

calculated.  The Kappa statistic ranges from -1 to +1, where +1 indicates perfect agreement and values of zero or less 

indicate a performance no better than random (Cohen, 1960; Lillesand et al., 2008).  

 

3. RESULTS AND DISCUSSION 

 

3.1. Comparison between Base Model and Expanded Model 

 

Table 2 shows the statistics (mean, mode, maximum, and minimum) of elevation, slope, terrain, and TWI calculated 

from the entire study area (HEFS) and the target species samples.  TWI was the focus of this study.  A large TWI value 

represents a given location with high soil moisture; a small TWI value represents a given location with low soil 

moisture.  By comparison, the mean and mode of TWI values for CGTs (4.8 and 5.9) were not only greater than those 

of the entire study area (4.3 and 3.5) but also greater than those of JEs (4.2 and 3.5) and those of RSRs (4.2 and 2.7).  

This outcome indicates that CGTs have a preference for lowlands with wetter soils, and RFs can be better suited to 

grow on well-drained uplands than JEs because the mode of TWI values for RSRs (2.7) was smaller than that of JEs 

(3.5).  Consequently, the greater the TWI value at a given point, the higher likelihood an GCT tree has to grow at that 

point, and vice versa, the smaller the TWI value at a given point, the higher an RF tree has the likelihood to grow at that 

point.  JEs frequently accompany with RSRs as TWI is relatively small. 



 

Table 2 The statistics of topographic factors for the entire study area and target species samples  

Site Statistic Elevation (m) Slope (°) TP TWI Site Elevation (m) Slope (°) TP TWI 

Entire 

study 

area 

Mean 1314 34.9 5 4.3 

JE 

sample 

site 

1568 21.9 6 4.2 

Mode 1247 37.7 6 3.5 1225 19.9 7 3.5 

Maximum 2419 79 8 19.8 2028 42.7 7 8.9 

Minimum 445 0 1 0.2 1104 2.9 4 2.4 

CGT 

sample 

site 

Mean 1678 19.7 6 4.8 

RSR 

sample 

site 

1704 17.7 7 4.2 

Mode 1881 1.8 7 5.9 1697 8.0 7 2.7 

Maximum 2054 36.2 8 7.8 2024 47.5 8 5.7 

Minimum 1149 1.8 1 2.1 1062 8.0 4 2.7 

TP: Terrain position; TWI: Topographic wetness index 

 

Table 3 shows the accuracies of the base model and expanded model built by MAXENT, DT, and BIOCLIM for 

predicting the suitable habitat of the three species.  For BIOCLIM, the accuracy of the expanded model was better than 

that of the base model for each of the three species, with a rise in accuracy of 0.05–0.12.  For MAXENT, the accuracy 

of the expanded model was better than that of the base model for each of JE and RSR species, with a rise in accuracy of 

0.03–0.04, while the accuracy of the expanded model was less than that of the base model for CGT species, with a drop 

in accuracy of 0.05.  On the contrary, the opposite was true for DT.  These results indicate that TWI was useful to 

improve the predictive ability of SDMs in a greater or lesser degree, depending on modeling species and algorithms.   

However, the rise in model’s accuracy is relatively limited although TWI can improve the predictive ability of SDMs. 

 

Table 3 The predictive accuracies of the base model and expanded model validated by independent sample dataset 

 

Base model Expanded model 

Kappa value Kappa value 

BIOCLIM MAXENT DT BIOCLIM MAXENT DT 

JE 0.35 0.59 0.55 0.43 0.63 0.50 

RSR 0.30 0.72 0.77 0.35 0.75 0.70 

CGT 0.20 0.56 0.50 0.32 0.51 0.55 

 

Also shown in table 3, the MAXENT and DT models equally matched in predictive accuracy, and outperformed 

BIOCLIM.  With the exception of BIOCLIM, the accuracies of MAXENT and DT models for estimating RSR species 

were higher than those of the two models for estimating CGT and JE species, and the ecological traits of the three 

species substantially affected the predictive performance of these models.  JE and CGT species were found to have a 

broad and scattered distribution, while RSR species has a specialized, narrow, and clustery distribution, usually forming 

a pure forest.  Specifically, RSR species was hard to compete with many other species in a good environment due to its 

slow growth rate, but it can grow in a poor environment with thin, acidic, and infertile soils where most species almost 

cannot grow.  Consequently, the ecological traits of species can affect modeling accuracy, and species with a 

widespread distribution (or broad ecological amplitude) like CGT and JE are generally more difficult for modeling than 

species with a clustery distribution like RSR. 

 

BIOCLIM is very simple and nearly identical to parallelepiped classifier, and it defines the ecological niche of a species 

as the bounding hyper-box that encloses all the records of the species in the core-climate based on rectangle (or 

parallelepiped).  However, BIOCLIM often leads to higher commission errors (erroneously assigns many background 

pixels to target species) and in turn decreases omission errors, thereby raising both overall accuracy and Kappa value.  

In contrast, MAXENT and DT, the two machine learning methods, can make more refined distinction between target 

species pixels and background pixels, thereby resulting in lower commission errors but higher omission errors and 

leading to lower overall accuracy and Kappa value.  The results in table 4 demonstrated the arguments as mentioned 

above as well.  Figure 2 shows the spatial patterns of the three species estimated by the base model and expanded model 

built by MAXENT (maps produced from DT and BIOCLIM are not shown here).   Regardless of predicting which 

species, the area of suitable habitat of any species estimated by BIOCLIM was much greater than that of any species 

estimated by either MAXENT or DT. 

 



Table 4 Distribution of  the suitable habitat of the three species estimated by the base model and expanded model 

 
 Base model Expanded model 

Algorithms BIOCLIM MAXENT DT BIOCLIM MAXENT DT 

JE 
Area (ha) 5,908.9 1,622.4 1,542.0 4,844.0 1,504.4 1,395.5 

Total area (%) 34.48% 9.46% 8.99% 28.27% 8.77% 8.14% 

RSR 
Area (ha) 5,908.4 556.0 615.1 4,892.8 534.8 808.8 

Total area (%) 34.47% 3.24% 3.59% 28.55% 3.12% 4.71% 

CGT 
Area (ha) 8,500.0 1,390.0 1,302.5 6,379.1 1,304.3 1,229.0 

Total area (%) 49.60% 8.11% 7.60% 37.22% 7.61% 7.17% 

 

Base models                                                                 Expanded models 

 

 

 
 

Figure 2 Map of the suitable habitat of three species generated from the base model and expanded model built by 

MAXENT (left column is base model; right column is expanded model; CGT, RSR and JE from top to bottom, 

respectively; maps produced by BIOCLIM and DT are not shown here) 



4. CONCLUSIONS 

 

The accuracies of the expanded models with additional TWI were better than that of the base model, regardless of 

which algorithms being used.  The MAXENT and DT models were equally matched in predictive accuracies, and 

outperformed BIOCLIM.  More importantly, the larger the TWI value (i.e. represent more soil moisture), the higher 

likelihood an CGT tree has to grow at a given location, and the opposite is true for either an RSR or a JE tree, i.e. the 

lower the TWI value (less soil moisture), the higher likelihood either an RSR or a JE tree has to grow at that location, 

but an RSR tree has higher likelihood than a JE tree does.   Consequently, this outcome shows that these species have 

the above-mentioned ecological traits and agrees with the team’s observations from field surveys.  The rise in accuracy 

is relatively limited although this proxy can improve the predictive ability of these SDMs.  Therefore, the proxy of solar 

irradiance (SIR) and high-resolution DEM derived from LiDAR will be incorporated into SDMS so that their predictive 

ability can be substantially improved. 
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