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ABSTRACT: For image classification, it is crucial to derive a classifier from a limited training data which can be 

useful to classify other testing samples without over-fitting. In this study, we applied weights of evidence model to 

locate possible training areas which can be used to optimize the classification results. Agricultural area in Chiayi, 

Taiwan is chosen as the study area. We used SPOT-5 images and hybrid classifier to classify the land cover into two 

dominant classes in the study area: pineapple and non-pineapple. Gray-level co-occurrence matrices (GLCM) and 

pure pixel index (PPI) are assumed as the key spatial factors for uncertainty estimation and can help indicate the best 

training areas for image classification. The weights of evidence model (WoE) was used to combine the spatial factors 

to map the uncertainty estimation results. The receiver operating characteristics (ROC) with area under curve (AUC) 

calculation was used to evaluate the proposed model. Future applications include providing the best and minimum 

training sites and maximizing the accuracy of image classification.  

 

1.  INTROCUTION 
 
Satellite image classification is considered to be the important process to extract land use / land cover information. 

Supervised classification needs training samples for the classification of the image. However, gathering training 

samples with representative information and excellent quality is a tough and time-consuming step. Training samples 

directly affect the quality of the classification. Therefore, developing an accurate, objective and automated extraction 

method of training sample can make image classification more effective. 

 

Traditional training sample selection is based on artificial way which is subjective and result in error. Several 

automatic or semi-automatic extraction methods of training area have been developed to improve the accuracy of 

training sample and the efficiency of image classification. SAFTE (semi-automated training field extraction) was 

designed to automatically delineate training areas with only an initial "seed pixel" for each field and a set of user 

specified extraction parameters including maximum absolute summed variance, maximum size and maximum 

relative-variance-increase ratio for a field (Buchheim and Lillesand, 1989).  Based on the concepts of SATFE, more 

studies combined unsupervised concepts (Skidmore, 1989), prior knowledge of geometric characteristics of land 

features (Bolstad and Lillesand, 1992; Hiroshi Okumuraa, 2003) or image segmentation (Mccaffrey and Franklin, 

1993) to improve the consistency and efficiency of the extraction of training area. Similarly, some studies extracted 

part of the training sample area by calculating setting a threshold as the basis for classification (Ozdarici Ok and 

Akyurek, 2011).  As the development of support vector machine (SVM), fewer training data sets are required to 

achieve higher classification accuracy compared with previous classifiers (Mantero et al., 2004). Therefore, more 

studies focused on designing approaches of training site selection suitable for SVM. For example, previous studies 

have proven that only the training samples lying on part of the edge of the class distribution in feature space are 

helpful for building support vectors; and thus, for crop classification, using ancillary soil information properly can 

help select the support vectors and reduce the amount of training sites significantly in the SVM classifier (Foody, 

2008; Foody and Mathur, 2004).  Another case is to combine spatial sampling schemes and use spatial statistics to 

compare information density of data to be classified with data used in the reference process (Mountrakis and Xi, 

2013). Several approaches for endmember selection, on the other hand, were proposed and used to cooperate with 

spectral mixture analysis in order to identify spectral characteristics and mixed ratio of each pixel in a given 

hyperspectral image. Popular approaches including N-FINDR (Winter, 1999) and pixel purity index (PPI) (Boardman, 

1994) were also applied to training site selection for image classification.  

 

Although the previous studies above developed diverse methodology for various classifiers, they demonstrated a 

common concept—the purity and homogeneity of training sites dominates classification accuracy. Highly 



homogeneous training sites usually contribute to good classification results (Shao and Lunetta, 2012). Generally, the 

common purpose for the related research above is to improve the degree of automation in the training field extraction 

while maintaining an acceptable level of classification accuracy. Current semi-automatic extraction methods of 

training sample area have been proved to be more efficient than the traditional extraction methods, manual and 

subjective selection of the initial seeds or thresholds is still necessary though. Besides, most approaches exhibited 

binary rather than continuous results and thus lacked the flexibility of training site selection for end users. 

 

Uncertainty estimation provides continuous and spatial probability distribution and has been used in risk management 

and error analysis of image classification (Comber et al., 2012; Muñoz-Marí et al., 2012). For risk management, the 

most popular models are certainty factor (CF) and weights of evidence (WoE). Certainty factor (CF) model has been 

used to evaluate the reliability of the rules induced from the decision support system for risk mapping (Sinha and 

Zhao, 2008). Literature also proved that GIS-based spatial risk assessment with CF model can be beneficial for hazard 

susceptibility mapping (Aboye, 2009; Binaghi et al., 1998; Devkota et al., 2013; Lan et al., 2004; Pourghasemi et al., 

2012). Similar as CF model, WoE is a quantitative model for combining evidence in support of a hypothesis and was 

originally developed for medical diagnosis rather than spatial analysis. Risk assessments of training sites (Dahal et al., 

2008; Pourghasemi et al., 2012; Regmi et al., 2014) and flooding (Tehrany et al., 2014) are also the main applications 

of WoE.  

 

The above instances demonstrate that risk assessment can help to delineate environmentally sensitive areas and has 

been widely used to investigate the probability of risk occurrence and evaluate risk levels for hazard prevention 

(Zhang et al., 2009). In this study, we used WoE model to map the areas prone to be suitable training sites. According 

to the common conclusions of the previous studies, we chose indexes which can represent the homogeneity of a given 

area as the factors for the WoE model. 

 
2.  DATA AND METHODS 

 

2.1 Study Area and Data 

 

We chose part of Minsyong Township, Chiayi County in the Central Taiwan as the study area (Fig.1). The study area 

is about 700 ha. Minsyong is a very good representative area of pineapple cultivation because it holds the top three 

yield and cultivation area in Taiwan during the five years. Wide and successive pineapple fields show up as 

homogeneous areas. However, a pineapple field exhibits mixed spectra because of the mixture of pineapple plants and 

soil, which increases the difficulty in training site selection. Therefore, pineapple cultivation areas are suitable for 

studying intelligent training site selection.  

 

The satellite image we used is SPOT-5 supermode imagery with four bands and 2.5 m spatial resolution. The 

supermode imagery was generated from two panchromatic images acquired simultaneously at a resolution of 5 meters 

and offset vertically and horizontally by 2.5 meters. The acquisition date of the image was October 23rd, 2012. The 

image was orthorectified with the rational polynomial coefficient model of the SPOT-5 sensor. Besides, 

image-to-map registration with road network and cadastral parcel data was performed to yield a root mean square 

error (RMSE) of 0.5 pixels.  

 

In order to match up the acquisition date of the satellite image, we surveyed the pineapple cultivation conditions of the 

study area on October 22nd, 2012. The results were recorded based on cadastral parcel data and show whether each 

parcel is a pineapple field or not. The accuracy of the survey data is about 95%. These data were used to choose 

training areas and for validation of the classification results. 

 

2.2 Purity and Homogeneity Calculation 

 

Since purity and homogeneity of training sites were proven to dominate classification accuracy, we assumed that PPI 

and gray-level co-occurrence matrices (GLCM) are the key indexes to represent these two kinds of characteristics 

respectively.  

 

PPI is based on the geometry of convex sets in an N-dimensional space. First, a dimensionality reduction is applied to 

the original satellite image with minimum noise fraction (MNF) (Boardman, 1994; Ifarraguerri and Chein, 1999; 

Martínez et al., 2006). A large number of random N-dimensional vectors were generated and then every image data 

point was projected onto each vector. The image data points which correspond to extreme values in the direction of a 

vector were identified and placed on a list. Threshold factor can be the benchmark to choose the extreme pixels. For 

example, a value of 2 flags all pixels greater than two DN values from the extreme pixels (both high and low) as 



extreme and would be placed on a list. As more vectors were generated, the list grew, and the number of times a given 

pixel was placed on this list was also tallied. Finally, the pixels with the highest tallies were considered as the purest 

ones. We set the number of iterations as 10,000 and the threshold factor as 5 separately; all pixels with tallies higher 

than zero were chosen as the training data of pure areas. Contrarily, the threshold factor was set as 40; all pixels with 

tallies equal to zero were selected as the training data of non-pure areas. The training data here only used for the 

logistic regression model mentioned as below.  

 

GLCM and their application approaches on the satellite image in this study is based on the works of Haralick (1979) 

and Puissant et al. (2005). Compared to a simple statistical approach using mean or standard deviation, GLCM allows 

the incorporation of both spectral and spatial distribution of image gray values. We calculated GLCM with an 

inter-pixel distance of 1 and with 33 window size band by band. 8 filters include mean, variance, homogeneity, 

contrast, dissimilarity, entropy, second moment, and correlation were chosen to calculate the candidate GLCM. 

Finally the most representative GLCM were decided as the key spatial factors for uncertainty estimation using the 

pure and non-pure training data extracted from PPI and the logistic regression model.  

 
Fig. 1 Study area in Central Taiwan.   

 

2.3 Uncertainty Estimation of Training Sites 

 

With the selected GLCM from the logistic regression model, the WoE model was then used to estimate the 

uncertainty of training site selection. The uncertainty map can help decide the best training sites for image 

classification. A detailed description of WoE is available in Bonham-Carter et al. (2013). The method calculates the 

weight for each representative GLCM (G) based on the presence or absence of the best training sites (T) within the 

area as follows (Bonham-Carter et al., 2013; Dahal et al., 2008): 
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where P is the probability and ln is the natural log. Similarly, G is the presence of a given representative GLCM, G  is 

the absence of a given representative GLCM, T is the presence of the best training sites and T  is the absence of the 

best training sites. A positive weight (


iW ) indicates that the predictable variable is present at the best training site 

locations and the magnitude of this weight is an indication of the positive correlation between the presence of the 

representative GLCM and the best training sites. A negative weight (


iW ) indicates the absence of the representative 

GLCM and shows the level of negative correlation. The difference between the two weights is known as the weight 

contrast, fW ( fW = 


iW -


iW ); the magnitude of the contrast reflects the overall spatial association between the 

representative GLCM and the best training sites. To evaluate the contribution of each factor towards the best training 



sites, the layer of best training sites was compared to various GLCM layers separately. For this purpose, Eqs. (1) and 

(2) were written in a number of pixel format as follows: 
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where 1Npix  is the number of pixels representing the presence of both a given representative GLCM and the best 

training sites, 2Npix  is the number of pixels representing the presence of the best training sites and absence of a 

given representative GLCM, 3Npix is the number of pixels representing the presence of a given representative 

GLCM and absence of the best training sites, 4Npix is the number of pixels representing the absence of both a given 

representative GLCM and the best training sites.  

 

2.4 Image Classification 

 

Based on the hybrid approach, with both unsupervised and supervised classification, a pixel-based as well as 

geographic information system (GIS) object-based post classification (GOBPC) process was carried out (Shiu et al., 

2012; Turner and Congalton, 1998). The hybrid approach utilized ISODATA (iterative self-organizing data analysis) 

and maximum likelihood classification techniques to overcome the high spectral heterogeneity and overlap caused by 

high land fragmentation in the study areas. In GOBPC, the cadastral parcel data were used as the classification unit. 

The class of a parcel was determined by using GIS zonal statistics and the pixel-based classification results. If half of 

the pixels covering one parcel are pineapple, then the parcel is assigned to the pineapple class, and vice versa.  

 

3.  RESULTS, DISCUSSION 

 
3.1 Selection of the Representative GLCM  
 

According to the pure and non-pure training data from PPI and the logistic regression model, the GLCM with 

p-values smaller than 0.05 were selected as the representative GLCM. The list of representative GLCM and their 

p-values was shown in Table 1. The results demonstrated that Band 1 (green) of SPOT-5 and its derivative GLCM 

have significant relationship with the pixel purity. Among the 8 GLCM indexes, second moment has the most 

significant relationship with the pixel purity.  

 

Table 1 The list of representative GLCM and their p-values 

Representative GLCM p-value 

Mean of Band 1 1.0610
-05

 

Homogeneity of Band 1 6.5910
-19

 

Dissimilarity of Band 1 9.3210
-12

 

Second Moment of Band 1 7.6110
-06

 

Second Moment of Band 2 9.9510
-06

 

Second Moment of Band 4 3.0810
-02

 

Correlation of Band 1 2.2510
-35

 

 

3.2 Uncertainty Estimation for Training Site Selection 
 

Like most uncertainty estimation approaches, the generalization of the factors with reclassification is inevitable 

because of the basic assumption of the models (Aboye, 2009; Lan et al., 2004; Pourghasemi et al., 2012). To be more 

objective, we reclassified each representative GLCM into 5 classes with natural-breaks (Jenk) method, which can 



minimize within-class variance and maximized between-class variance in an iterative series of calculations (Jenks 

and Coulson, 1963). Class 1 stands for the area with the lowest GLCM values while class 5 represents the highest. 

According to the Eqs. (3) and (4), 


iW , 


iW  and fW  of each class of each representative GLCM were calculated. 

The summary of the evidence classes identified as indicators for the best training sites is shown in Table 2. High 

fW value indicates the given class of the given GLCM has high positive correlation with the presence of the best 

training sites, and vice versa. After calculating the fW  value for each representative GLCM, the uncertainty 

estimation map for training site selection can be generated by summing up all fW  value layers. As Fig. 2 shows, 

ROC curve and AUC imply that the WoE model performance is in “excellent” class according to the 

quantitative-qualitative relationship between AUC and prediction accuracy (Pourghasemi et al., 2012). The 

uncertainty estimation map was classified into five levels: five potential levels, very low, low, uncertain, high and 

very high potential based on the natural-breaks method. Compared the original image in Fig. 1 and the uncertainty 

estimation map in Fig. 3, vegetation generally shows higher potential level while roads and bare soil surfaces 

commonly exhibit lower level. As we assumed, several pineapple fields show lower potential level because of the 

mixed spectra from the mixture of pineapple plants and soil.  
 
3.3 WoE Model Assessment with Image Classification 
 

Different training sites were selected for image classification based on the uncertainty estimation map. The curves in 

Fig. 4 show the relationship between different potential level of training sites and the corresponding accuracy 

assessment results. According to the literature, purer and more homogeneous training sites make better classification 

results. However, the facts show the purest and most homogeneous training sites can only contribute the highest 

producer's accuracy of pineapple and user's accuracy of non-pineapple. Generally, the best classification results come 

from the mid-pure and mid-homogeneous training sites. The above results are different from the findings of the 

previous study (Shao and Lunetta, 2012). The main reason may come from the inevitable highly-mixed nature of each 

2.5-meter pixel in a pineapple field. Pure and homogeneous training sites can only help classify the pure and 

homogeneous pineapple fields while cannot classify most pineapple fields with mixed spectra. Furthermore, the very 

high AUC 0.988 also indicates the possible problem of overfitting. And, last but not least, this study did not consider 

the number of pixels of training sites as one of the selection criteria, which has been suggested to be larger than 10n 

pixels for each class with an n-band image (Jensen, 2005). 

 

4.  CONCLUSIONS 

 

This study provides an alternative solution for training site selection. Future applications include providing the best 

and minimum training sites and maximizing the accuracy of image classification. Yet, future studies may have to 

focus on three issues. First, this study classified the image into dual classes only including pineapple and 

non-pineapple. Accuracy assessment of classification with multiple classes is necessary for the most practical 

conditions. Second, the reclassification of each representative GLCM and the uncertainty estimation result would be a 

tricky step in the WoE model. Different reclassification method can lead different result. More objective substitute 

step has to be proposed to improve this uncertainty. Finally, methodologies of training site selection suitable for SVM 

or other classifiers are also necessary in practice.  
 

 
Fig 2 ROC curve and AUC of the WoE model. 

 

Table 2 Summary of the evidence classes identified as indicators 

for the best training sites (only two of the representative GLCM are 

shown here). 
GLCM Class Npix1 Npix2 Npix3 Npix4 W+ W- Wf 

Mean  

of Band 1 
1 94 1089 16497 1919984 2.233  -0.074  2.307  

2 14 1169 298880 1637601 -2.568  0.156  -2.724  

3 5 1178 522206 1414275 -4.156  0.310  -4.466  

4 9 1174 798964 1137517 -3.993  0.524  -4.518  

5 1059 124 291593 1644888 1.783  -2.092  3.875  

Dissimilarity 

of Band 1 
1 873 310 475501 1460980 1.100  -1.057  2.158  

2 24 1159 829759 1106722 -3.050  0.539  -3.589  

3 1 1183 460431 1476050 -5.640  0.271  -5.911  

4 3 1180 146657 1789824 -3.397  0.076  -3.473  

5 281 902 15792 1920689 3.372  -0.263  3.635  



 
Fig. 3 Uncertainty estimation of training site selection 

generated from the WoE model. 

 

 
Fig. 4 Accuracy assessment of image classification using 

the training sites with different potential level. 
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