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ABSTRACT: While the relationship between fractional cover of built features and the urban heat island (UHI) has 

been well studied, relationships of how spatial configuration (e.g., clustered, dispersed) of these features influence 

urban warming are not well understood. As buildings and paved materials are defining features of the urban 

environment it is important to explore the spatial pattern of these features to understand how they influence urban 

warming effect. The goal of this study is to examine if and how spatial arrangements of anthropogenic features 

(buildings, paved surfaces) influence land surface temperatures (LST) in an urban environment. This study focuses 

on Las-Vegas, NV, a desert city that has undergone dramatic urban center expansion and population growth since 

the 1960s. The data used to classify land cover and extract building consist of Geoeye-1 (formerly Orbview 5) 

image. The image used was taken on October 12, 2011 and has a spatial resolution of 3m. Classification was carried 

out using object based image analysis (OBIA). A spatial autocorrelation approach (i.e., local Moran’s I) that 

measures the spatial dependence of a point location to its neighboring points and describes how clustered or 

dispersed points are arranged in space was employed. Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) data acquired on July 6, 2005 (daytime) and August 27, 2005 (nighttime) were regressed 

against spatial patterns of anthropogenic features. Results from this study suggest that clustered spatial arrangements 

of buildings and paved surfaces elevate surface temperatures more severely. 

 

1. INTRODUCTION 

The world population is projected to reach 9.6 billion in 2050 based on the medium-variant projection (UN, 2013). 

The increasing population will inevitably lead to a more urbanized world, as the majority (more than one half) of the 

population will reside in cities. Sustainable city design and the ways in which city dwellers live their daily lives, 

thus, play crucial roles in minimizing required inputs of energy, water, and food, and reducing waste output of heat, 

air pollution, and water pollution (Kramers et al., 2014). Building sustainable cities is a must to achieve a 

sustainable world. The Urban Heat Island (UHI) effect is a well-known phenomenon caused by urbanization — a 

process of altering natural surfaces with manmade features that significantly change the energy balance and affect 

the urban thermal environment (Hart and Sailor, 2009). The UHI effect not only has impacts on air quality, water 

consumption, and energy use, but also increase the magnitude and duration of heat waves in cities which often 

elevate risks of heat related illnesses and deaths (Brazel et al., 2007). 

High-spatial resolution imagery not only opens the possibilities to study detailed land cover features and 

different man-made materials on LST, but also provides the capability to examine the spatial characteristics and 

arrangement of land cover patches on LST. Landscape metrics, such as patch density, edge density, and landscape 

shape index, were widely used to examine the impacts of spatial configuration of land cover features on LST (Li et 

al., 2011; Maimaitiyiming et al., 2014). These studies found that spatial configuration has significant impacts on 

LST, indicating that spatial configuration can be optimized to mitigate the UHI effect. However, the readily 

available landscape configuration metrics from FRAGSTATS software used in these studies, especially the metrics 

at the landscape level which consider all patch types simultaneously, are not well designed to provide direct 

interpretation and information on how to spatially design and arrange a specific land cover type to achieve effective 

UHI mitigation. For instance, Li et al. (2011) resulted in positive correlations between LST and edge (patch) density, 

and a negative relationship between LST and Shannon’s Diversity Index (SHDI) at the landscape level. The SHDI 

measures land cover diversity in landscape. Their results suggested that several greenspace patches provided a 

stronger UHI mitigation effect than its concentrated form based on their results (Li et al., 2011). For another study, 

Zhou et al. (2011) reported that increases in edge density of woody and herbaceous vegetation decreases LST, and 

that increases in shape complexity and variability of buildings and paved surfaces leads to an increase in LST. In 

addition, configuration metrics often have good correlations with composition metrics (Riitters et al., 1995). 

Therefore, it is necessary to control for the effects of composition when examining the effects of configuration of 

land cover features on LST. One effective way to address the above limitations is to use geostatistical techniques. 

Two spatial autocorrelation indices, i.e., local Moran’s I and Getis, have been applied to examine the impacts of 

spatial patterns of green space on temperature (Myint, 2012). Local Moran’s I was found effective on characterizing 
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dispersed and clustered patterns of land cover features (Fan and Myint, 2014, Baojuan, et. al., 2014). Given the 

above background, this study aims to answers these questions: (1) Does the spatial pattern of anthropogenic features 

influence LST? (2) Are the impacts of spatial pattern on LST similar in magnitude among different built features? 

(3) Do spatial pattern of built features show similar impacts when other land cover fractions are controlled? 

 

2. STUDY AREA AND DATA 

Las Vegas, the most populous city in Nevada with 1.9 million people living in its metropolitan area, was chosen. 

The city is located in a basin on the floor of the Mojave Desert, this subtropical desert city’s hottest months fall in 

between June and September (NOAA 2013).  

 

2.1 High Resolution Satellite Data 

The data used in this study include high resolution multispectral satellite imagery for detailed urban land cover 

classes and daytime and nighttime surface temperature data over Las Vegas. We employed Geoeye-1 high resolution 

satellite data over Las Vegas. The Geoeye-1 image was taken on October 12, 2011. The image has a spatial 

resolution of 3m with 4 bands: Blue (0.45 – 0.51 μm), Green (0.51 – 0.58 μm), Red (0.66 - 69 μm), and Near 

Infrared (0.78 – 0.92 μm). The object-oriented approach that aggregates pixels into discrete image objects (Benz et 

al, 2004) was employed to identify urban land cover classes (i.e., buildings, trees/shrubs, grass, unmanaged soil, 

paved surfaces, water). Figure 1 shows a Geoeye-1 and its output over Las Vegas. 

 
Figure 1. (a) Geoeye-1 image over Las Vegas displaying near infrared (NIR) in red, visible red in green, and visible 

green in blue; (b) Classified output. 

 

2.2 Land Surface Temperatures 

We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images at 90 m spatial 

resolution to examine daytime and nighttime differences in LST. ASTER summer daytime temperature data was 

acquired on June 10, 2011 and nighttime temperature data was acquired on October 17, 2011 (Figure 2). The Kinetic 

(K) temperature data (i.e., ASTER08) was used to convert temperatures into Celsius (JPL 2001). 

 
Figure 2. (a) ASTER daytime LST (June 10, 2011); (b) ASTER daytime LST (October 17, 2011). 

 

3. METHODOLOGY 

A spatial measure called local Moran’s I was employed as a local indicator of spatial association (LISA) to 

characterize spatial configuration (from clustered to dispersed) of urban landscapes at a local scale (Fan and Myint, 

2014). It is defined as 
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(1) 

where ix  represents the attribute value (i.e. zero or one in the binary map) at location i  and x denotes the average 

attribute values for pixels in the entire image.   dwij  is a spatial weight matrix where the diagonal elements are all 

zero, and the off-diagonal elements are either one or zero, depending on whether the corresponding pixels are 

neighbors or not. The neighborhood was defined by the distance d. 

The average local Moran’s I values were normalized to the range of −1 to 1. Local Moran’s I
 
values of −1 

represent highly dispersed patterns, values of zero indicate random patterns, and values of 1 represent highly 

clustered patterns. Figure 3 shows hypothetical spatial patterns of a land cover type (e.g., value 1 = paved) and their 

corresponding local Moran’s I values. We extracted individual land cover type (i.e., buildings, paved) separately and 

assigned value one to pixels with a land cover type and zero to other pixels. We then computed local Moran’s I 

values for every 90m x 90m area to match with ASTER resolution (90m). The Pearson correlation was employed to 

evaluate the impacts of the spatial pattern of anthropogenic fractions on LST. To minimize the effect of land cover 

composition on LST, we further controlled for the land cover composition by grouping similar compositions of land 

cover types. Because it is almost impossible to obtain even for a few observations with the same amount of fraction 

for each land cover type, we grouped them based on a 10% fraction range by separating groups at 10% interval: 0–

9%, 10–19%, 20–29%, 30–39%, 40–49%, 50–59%, 60–69%, 70–79%, 80–89%, 90–100%. 

 

 
Figure 3. Three hypothetical spatial configurations of a land cover (e.g., paved surface = 1) in a 7x7 grid area and 

local Moran’s I values. 

 

4. RESULTS 

4.1 Effects of anthropogenic land cover features on LST 

Paved surface fractions are positively correlated to daytime temperature (R = 0.44) and nighttime temperature (R = 

0.52) implying that the higher the paved surface fractions the higher the surface temperatures. They both showed 

statistically significant correlations. Even the relation between paved surface and nighttime LST are stronger the 

slope value with daytime LST was higher meaning that paved surface fractions have greater impact on LST. 

Building fractions for both daytime (R = 0.25) and nighttime (R = 0.10) showed very little positive correlation to 

LST. The main explanation is that not every building structure interacts with its local environment the same. 

Residential homes in these areas, often only one to two stories high, have been found in previous studies to show a 

positive relationship with surface temperatures (Myint 2013). These houses are usually covered with darker 

rooftops, which absorb more heat. On top of this, the lower height these structures possess does not provide 

significant shade to cool the areas they surround (Myint 2013). Commercial buildings, on the other hand, often have 

the opposite effect on UHI—they can actually cool down their local environments. This is because these large 

buildings usually have high albedo roofs—meaning light-colored rooftops that reflect sun more efficiently and thus 

absorb less heat (Myint 2013). During the daytime, commercial structures also provide large amounts of shade to 

areas directly around them, which reduces the amount of sun hitting surfaces, thus also lowering UHI. Because of 

these differences in size, material, and location between residential and commercial buildings, their overall 

relationship to LST is harder to determine and must be observed in greater detail. 

 

4.2 Impact of anthropogenic features’ spatial patterns on LST  

Local Moran’s I
 
was used to examine the correlations between spatial patterns of the various land cover features to 

LST. For impervious structures, such as paved surfaces and buildings, there is a positive correlation between local 

Moran’s I of anthropogenic surfaces and LST, meaning as the feature becomes more clustered (closer to 1.0), it 
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increases surfaces temperatures greater. The spatial arrangement of paved surfaces had strong positive correlations 

to surface temperature; however, nighttime proved to have higher R
 
values, thus showing a greater relationship. 

Although spatial configuration of buildings showed a slightly positive correlation with LST, their daytime 

and nighttime R
 
values were too low to be significant. Since R

 
values for paved surface spatial configuration were 

greater at nighttime, only these temperatures were grouped (Table 1) to demonstrate if and how spatial configuration 

of built materials influence surface temperatures. Out of all 25 groups, almost all had statistically significant 

correlations (R
 
> 0.30) between spatial pattern of paved surfaces and LST. 9 groups were found to have medium to 

strong (R
 
> 0.45) spatial configuration to nighttime surface temperature relationships. Hence, we presented the 

groups that show correlations higher than 0.3. Among them a group with only 20-29% paved fraction (R = 0.60) 

shows a strong paved surface spatial relationships to LST. For this particular group with paved surface fractions of 

20-29%, soils were 20-29%, greenery was 10-19%, and buildings consisted of 30-39%. The observations in this 

group ranged from fairly dispersed (Local Moran’s I
 
of -0.64), to almost random (Local Moran’s I

 
of -0.09). The R

 

value (0.6) here was one of the highest recorded, meaning the spatial arrangement of paved surfaces under this land 

composition has a very strong relationship to LST. As we can see, the less dispersed paved surfaces become under 

these conditions, the greater the increase in surface temperatures. If paved surfaces are more dispersed between big 

buildings especially in downtown commercial areas, it increases the likelihood that each section will see shade as 

some point in the day. However, if they become less scattered, and more clustered together, there is a possibility that 

a large percentage of the paved surface fraction may never receive shading, and thus will heat up nighttime LST 

greater because of all the sunlight absorbed during the day. To solidify our conclusions, we would like to take a look 

at another group with paved surface fractions of 70-79%, soils 0-9%, greenery 10-19%, and buildings 0-9%. This 

group’s observations ranged from barely dispersed (Local Moran’s I
 
of -0.33) to somewhat clustered (Local Moran’s 

I
 
of 0.78). The high R

 
value (0.61) of this group indicates that, once again, the spatial configuration of paved 

surfaces has a strong relationship with LST when vegetation also has relatively high fractions. As paved surfaces 

become more clustered when near vegetation, nighttime temperatures increase. 

 

 
Figure 4. Regression models and scatterplots of buildings and paved surfaces vs. daytime and nighttime LST. 

 

5. DISCUSSION 

The results above showed that different built cover features have varying impacts on surface temperatures. When 

looked at separately, each observed feature had a slightly different daytime and nighttime relationship to LST. Paved 

surfaces show positive correlations to LST. Paved surfaces were shown to raise temperatures as the feature’s 

percentage increased. However, a significantly stronger relationship was observed at nighttime, meaning paved 

surfaces are more effective at raising LST during this period. As discussed previously, these impervious surfaces, 

such as asphalt, are much better at trapping heat during the day. After the sun goes down, these paved surfaces 

release all of that absorbed heat into the air, causing an unnatural influx in nighttime temperatures. 
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The spatial configuration of paved surfaces had a stronger positive relationship to LST during nighttime. 

Even though this land feature also increased daytime temperatures significantly as its spatial pattern became more 

clustered, the effectiveness of its clustering on LST was much greater at night. Paved surfaces usually include 

asphalt and other dark colored impervious materials that release trapped heat during nighttime. When these surfaces 

are clustered together, their powerful warming effects are aggregated. Because spatial arrangements of paved 

surfaces had a large effect on LST during nighttime, we chose this land feature to observe in groups and controlled 

for its land composition. The results from this study showed that the clustering effect of paved surfaces is most 

effective at raising surface temperatures when combined near soil. Previous studies have also found this to be true, 

and recommend that city managers should target areas with large patches of paved surfaces and soils to better 

mitigate the UHI (Zheng et al., 2014). These types of areas are usually large parking lots or highways surrounded by 

open soils. Current city planners can help lower surface temperatures by clustering together vegetation and trees in 

between the plots of paved surfaces. Our results also showed the spatial pattern of paved surfaces that have a very 

strong positive relationship to nighttime LST when building fractions were also high. 

 

Table 1. Pearson correlation between local Moran’s I of paved surfaces and daytime nighttime LST under different 

controlled land cover compositions (only those groups with r > 0.3), number of samples (n), minimum (Min.) and 

maximum (Max.) values of local Moran’s I. 

 
Clustered paved surfaces may increase nighttime surface temperatures more effectively when building 

percentages are also high because these paved areas are less likely to receive shading during the day from those 

commercial buildings when they’re bunched together. If these sidewalks, asphalt roads, and other paved materials 

were broken up by large patches of trees or grass, which would provide shade and also have been shown to 

effectively lower LST through evapotranspiration, the UHI would be efficiently lessened. 

Buildings were shown to have a weak positive relationship to LST during daytime and nighttime, although, 

the former is stronger. This can be explained by looking at the varying types of buildings observed. Many 

commercial buildings showcase solar insulation qualities, and actually reduce temperatures around them, meaning 

they are UHI friendly (Myint 2013). Residential buildings, on the other hand, increase daytime surface temperatures 

due to their dark colored roofs that absorb more heat (Myint 2013). The negative effects of these residential homes 

help to explain why buildings have a stronger positive relationship to LST during the daytime. The spatial patterns 

of buildings showed a weak relationship to daytime LST, and an even weaker relationship to nighttime surface 

                     Land cover %                       Moran's I

Paved Soil Vege Bld. Min. Max. r r2
Slope n

10-19 0-9 20-29 50-59 -0.79 -0.28 0.45 0.20 5.73 136

10-19 10-19 20-29 40-49 -0.75 -0.34 0.37 0.14 5.34 58

10-19 0-9 40-49 30-39 -0.77 -0.23 0.30 0.09 3.29 90

20-29 10-19 0-9 50-59 -0.69 -0.29 0.55 0.30 5.58 18

20-29 0-9 10-19 40-49 -0.58 -0.24 0.39 0.15 5.64 30

20-29 10-19 10-19 40-49 -0.69 -0.08 0.33 0.11 2.51 40

20-29 0-9 10-19 50-59 -0.65 -0.15 0.37 0.14 4.26 166

20-29 10-19 10-19 50-59 -0.69 -0.21 0.31 0.10 2.90 44

20-29 0-9 10-19 60-69 -0.65 -0.22 0.53 0.28 5.99 40

20-29 20-29 10-19 30-39 -0.64 -0.09 0.60 0.36 4.85 21

20-29 0-9 20-29 40-49 -0.65 -0.05 0.36 0.13 4.03 199

20-29 10-19 20-29 40-49 -0.60 -0.34 0.45 0.20 6.52 17

20-29 0-9 20-29 50-59 -0.65 -0.09 0.40 0.16 4.22 64

20-29 10-19 30-39 20-29 -0.68 -0.19 0.39 0.15 4.17 20

20-29 0-9 30-39 30-39 -0.58 -0.25 0.35 0.12 4.04 131

30-39 10-19 20-29 20-29 -0.50 0.20 0.49 0.24 4.12 24

30-39 0-9 30-39 30-39 -0.51 0.07 0.41 0.17 3.15 42

40-49 10-19 10-19 30-39 -0.39 0.42 0.39 0.15 2.19 82

40-49 0-9 10-19 40-49 -0.28 0.22 0.30 0.09 2.45 27

40-49 20-29 20-29 10-19 -0.36 0.23 0.40 0.16 2.73 61

50-59 0-9 10-19 30-39 -0.12 0.49 0.35 0.12 2.46 55

60-69 0-9 20-29 10-19 0.11 0.51 0.50 0.25 7.65 22

70-79 0-9 0-9 10-19 0.34 0.76 0.47 0.22 7.93 22

70-79 0-9 10-19 0-9 0.33 0.78 0.61 0.37 4.95 15

80-89 0-9 0-9 0-9 0.49 0.91 0.36 0.13 4.32 20



 
 

temperatures. The closer these buildings are located next to one another, the less spread-out shade they will be able 

to provide to paved surfaces throughout the day. 

 

6. CONCLUSION 

We found that impervious materials, such as roads, parking lots, and driveways had a strong positive relationship to 

surface temperatures, meaning they raise LST as their percentages increase. Generally, buildings were found to have 

a slightly positive relationship to LST; however, this data needs to be observed in greater depth, due to commercial 

buildings’ ability to decrease the UHI (Myint 2013). The spatial configuration of paved surfaces had the highest 

impact on surface temperatures at night; this was the chosen group to control for land composition as a nighttime 

indicator. It was found that, when paved surface fractions were high (>50%), and soil fractions were also significant 

(>20%), the spatial configuration of paved surfaces showed a very strong relationship to nighttime LST. Using these 

results, along with those found from previous studies, city managers should target these areas and devise a plan that 

either disperses the paved surfaces (i.e. by adding buildings between them), or introduces greenery that helps 

mitigate their aggregated warming effects (Zheng et al., 2014). When clustered together, and located near a large 

percentage of buildings, paved surfaces were much more effective at raising nighttime LST. In order to combat this 

effect, future city planners in Las Vegas and other arid cities should disperse buildings as much as possible in 

between paved asphalt, sidewalks, and other paved materials. This way, shade provided by commercial buildings 

has a greater potential to cool down surface temperatures, as it is spread out more between the local environments. 
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