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ABSTRACT: Haze is an inevitable interference when mapping land use/cover with optical satellite imagery. In this 

study, we applied weights of evidence model to locate possible area with omission and commission errors and 

estimate the degree of uncertainty for image classification in haze-contaminated area. Agricultural area in Kansas, U. 

S. is chosen as the study area. We used Landsat-5 TM images and hybrid classification to classify the land cover into 

four dominant classes in the study area: urban, cropland, grassland and water. Haze thickness and distances to clusters 

are assumed as the key factors for uncertainty estimation. For haze thickness, we applied Fourier analysis and 

high-pass filter to filter the haze-contaminated image and then spectral change vector analysis was used to acquire the 

magnitude of the difference between pre-filtered and post-filtered images. The magnitude of the difference can be 

considered as the haze thickness information. For distance to clusters, distances in multi-spectral space between a 

pixel's signature and all training clusters can be computed during the procedure of maximum likelihood classification. 

We chose distance to the first, second and third closest clusters as the representation of classification confidence. 

Finally, the weights of evidence model was used to combine the four key factors to map the uncertainty estimation 

results. Model assessment with the receiver operating characteristics (ROC) shows the area under curve (AUC) is 

0.576. The model also indicates the two most significant factors are distance to first cluster and haze thickness, which 

is different from the findings of the previous study. Future applications include providing the possible 

misclassification areas for human-computer interactive interpretation. It can be helpful to improve the accuracy by 

using the human interpretation method to re-interpret the possible misclassification areas.  

 

1.  INTROCUTION 
 
Image classification is considered to be the important process to map land use / land cover. However, 

misclassification is inevitable and can be a significant source of error when integrating remote sensing data with other 

geographic information system (GIS) data. Potential error sources come from the inability of classification systems to 

categorize mixed classes, transition zones, or dynamic systems; poorly defined or ambiguous class definitions; human 

subjectivity; and the lack of compatibility among different classification systems used with both remote sensing and 

traditional data types(Issues et al., 1991). Performances of classifiers and their associated uncertainties are commonly 

assessed with the confusion matrix and its derived measures including overall accuracy (OA), user's accuracy (UA), 

producer's accuracy (PA) (Congalton, 1991) and the kappa statistic (κ) (Cohen, 1960). However, this evaluation is 

based on the existence of ground truth data. Accuracy assessment with high degree of statistical confidence may need 

plenty of ground truth data, which also means taking plenty of time and manpower is inevitable.  

 

From 1990’s, several studies have proposed the concepts of “uncertainty” in image classification (Fisher, 1994; Van 

der Wel et al., 1998). Uncertainty comes from the discreteness nature of remotely sensed data which neglects the 

fuzzy character of the environment. Cloud or haze also decreases the image classification quality significantly 

because it influences the spectral characteristics of the ground features and makes them easily confused with other 

feature type (Cristóbal and Gabarda, 2007; Meng et al., 2009; Zhang et al., 2002). Haze-off methodologies mainly 

include histogram matching (Richter, 1996), regression tree (Helmer and Ruefenacht, 2005), image fusion (Gabarda 

and Cristóbal, 2007), dark channel prior method (DCPM)(Kaiming et al., 2011) and wavelet analysis of time-series 

imagery (Yong et al., 2002). These haze-off methodologies can help derive the degree of haze influence for image 

uncertainty estimation. Generally, uncertainty estimation can benefit the image classification process in two ways. 

First, it allows measuring the classification reliability before accuracy assessment with ground truth data. Second, it 

enhances accuracy assessments and improves classification confidence. Entropy, originating from information theory, 

was commonly used to define the uncertainty as the information content of a piece of information that would reveal 

this value with perfect accuracy (Van der Wel et al., 1998). In addition, derived information from classification 



models can also help estimate uncertainty. For example, several classifiers, such as maximum likelihood, compute 

distances between the unique spectral signature of a given pixel and all possible clusters within an n-dimensional 

feature space that represents discrete land cover categories to decide the possible category of that given pixel. The 

distance to the second closest cluster can reflect the classification confidence (Mitchell et al., 2008). On the other hand, 

soft classification models with adaptive and flexible manner can also deal with the uncertainty and improve the 

classification accuracy (Binaghi et al., 2003; Comber et al., 2012; Wang, 1990). Similarly, decision tree classifiers, 

such as random forests (RF) and extremely randomised trees (ERT), are also able to model the uncertainty with 

Monte Carlo simulation (Barrett et al., 2014; Loosvelt et al., 2014).  

 

For risk management, the most popular models used to carry out uncertainty estimation are certainty factor (CF) and 

weights of evidence (WoE). CF and Woe models with GIS spatial factors can be beneficial for landslide (Aboye, 2009; 

Binaghi et al., 1998; Devkota et al., 2013; Lan et al., 2004; Pourghasemi et al., 2012; Regmi et al., 2014) or flooding 

susceptibility mapping (Regmi et al., 2014; Tehrany et al., 2014). The above instances demonstrate that risk 

assessment can help to delineate environmentally sensitive areas and has been widely used to investigate the 

probability of risk occurrence and evaluate risk levels for hazard prevention (Zhang et al., 2009). In this study, we 

applied WoE model to map the uncertainty of image classification. Haze thickness and distances to clusters are 

assumed as the key factors for uncertainty estimation.  

 
2.  DATA AND METHODS 

 

2.1 Study Area and Data 

 

We chose part of Kansas State, United States as the study area (Fig. 1). The study area is about 101,524 ha. Cropland, 

pasture, orchards and groves dominate the land cover and show up as wide and homogeneous areas. We used 

Landsat-5 imagery with 6 bands besides thermal band and 30 m spatial resolution. In order to study the uncertainty of 

image classification in haze-contaminated area, we chose the image with haze significantly influencing the image 

quality and hindering the land use/cover analysis. The acquisition date of the image was April 24th, 2005. The image 

was converted from the digital numbers (DNs) to top-of-atmosphere (TOA) reflectance (Chander and Markham, 2003; 

Chander et al., 2007). The Kansas Gap Analysis Program (GAP) database and the attributed U.S. Department of 

Agriculture (USDA) Common Land Unit (CLU) dataset were used for training and validation (Fig.1). In order to 

avoid the geometric problem between the image and the CLU dataset, the image was orthorectified and registered 

with road network and CLU dataset to yield a root mean square error (RMSE) of 0.5 pixels. 

 

 
Fig. 1 Study area in Kansas, U. S. and the USDA CLU dataset.  

 



2.2 Haze Detection 

 

We revised the approach of hazy area recovery from Shiu et al. (2011) to model the haze distribution and thickness.  
Haze could be assumed as the low spatial frequency component in a hazy image because the spatial variation of its 

distribution is slower (on the scale of km) than for land cover which generally changes at higher frequencies (Feng et 

al., 2004; Yong et al., 2002). Therefore, Fourier analysis and filter can be used to reduce the haze and recover ground 

information. If we assumed the haze is homogeneous in each 1 km square area in the 30-meter resolution image, noise 

caused by haze would be periodic. Based on the assumption above, the image was diced into M × N pixels grids. We 

chose M = 25 and N = 25 for our image materials. Each grid was transformed to frequency domain with Fourier 

analysis and calculated as Fourier spectrum. The haze-off filter was derived from a series of image pairs in the 

training group in Shiu et al. (2011). Let the Fourier spectrum of one grid in a hazy image be denoted by Af i, spectrum 

of one grid in a clear image be denoted by Af i’, m},…{1,i and m is the number of the grid pairs, Nm . The haze 

filter, Hf , is given by the equation: 
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The haze filter Hf was used to be a moving window filter to remove the haze and recovery ground information in the 

hazy image. The filtered result was then transformed back to spatial domain with inverse Fourier transform to get the 

haze-off image. Spectral change vector analysis was then used to acquire the magnitude of the difference between 

hazy and haze-off images, which represents the degree of haze influence. The magnitude was utilized as the factor for 

the uncertainty estimation of image classification.  

 

2.3 Image Classification 

 

Based on the hybrid approach, with both unsupervised and supervised classification, a pixel-based process was 

carried out (Turner and Congalton, 1998). The hybrid approach used ISODATA (iterative self-organizing data 

analysis) and maximum likelihood classification techniques to overcome the high spectral heterogeneity and overlap 

caused by difference of cultivating time in the study area. Four classes including urban, cropland, grassland and water 

were classified. Mahalanobis distances between the measurement vector of one given pixel and the mean vector of all 

possible clusters were calculated. Pixels with higher Mahalanobis distance values are more likely to be misclassified. 

Contrarily, the pixels with lower values are spectrally nearer, and more likely to be classified correctly. We chose the 

distances to the first, second and third closest clusters for each pixel as the factors for the uncertainty estimation of 

image classification.  

 

2.3 Uncertainty Estimation of Image Classification 

 

With the selected factors from haze detection and Mahalanobis distances, the WoE model was then used to estimate 

the uncertainty of image classification. The uncertainty map can help find the potential areas where misclassification 

happened. A detailed description of WoE is available in Bonham-Carter et al. (2013). The method calculates the 

weight for each factors (F) based on the presence or absence of the misclassification (M) within the area as follows 

(Bonham-Carter et al., 2013; Dahal et al., 2008): 
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where P is the probability and ln is the natural log. Similarly, F is the presence of a given factor, F  is the absence of 

a given factor, M is the presence of the misclassified area and T  is the absence of the misclassified area. A positive 

weight ( 

iW ) indicates that the predictable variable is present at the misclassified locations and the magnitude of this 

weight is an indication of the positive correlation between the presence of the factors and the misclassified areas. A 

negative weight ( 

iW ) indicates the absence of the factors and shows the level of negative correlation. The difference 

between the two weights is known as the weight contrast, 
fW (

fW = 

iW - 

iW ); the magnitude of the contrast 

reflects the overall spatial association between the factors and the misclassified areas. To evaluate the contribution of 

each factor towards the misclassified areas, the layer of misclassified areas was compared to various factor layers 

separately. For this purpose, Eqs. (1) and (2) were written in a number of pixel format as follows: 
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where 
1Npix  is the number of pixels representing the presence of both a given factor and the misclassified areas, 

2Npix  is the number of pixels representing the presence of the misclassified areas and absence of a given factor 

3Npix is the number of pixels representing the presence of a given factor and absence of the misclassified areas, 

4Npix is the number of pixels representing the absence of both a given factor and the misclassified areas.  

 

3.  RESULTS AND DISCUSSION 

 

Table 1 shows the accuracy assessment of hybrid classification. Generally, cropland and water areas show better 

classification results while urban areas exhibit lower accuracy. Although the overall accuracy can achieve over 80%, 

the kappa statistic is only 0.348. Low kappa statistic may reflect the influence of haze. The misclassified and correct 

areas were separated into training and validation groups with 1:1 proportion respectively in order to generate the 

uncertainty map and validate the WoE model. The results of haze detection and the Mahalanobis distances to the first, 

second and third closest clusters for each pixel are shown in Fig. 2. Like most uncertainty estimation approaches, the 

generalization of the factors with reclassification is inevitable because of the basic assumption of the models (Aboye, 

2009; Lan et al., 2004; Pourghasemi et al., 2012). To be more objective, we reclassified each factors into 5 classes 

with natural-breaks (Jenk) method, which can minimize within-class variance and maximized between-class variance 

in an iterative series of calculations (Jenks and Coulson, 1963). Class 1 stands for the area with the lowest degree of 

haze influence or the lowest value of Mahalanobis distance while class 5 represents the highest. According to the Eqs. 

(3) and (4), 

iW , 

iW  and 
fW  of each factors were calculated. The summary of the evidence classes identified as 

indicators for the potential misclassified areas is shown in Table 2. High 
fW value indicates the given class of the 

given factor has high positive correlation with the presence of the misclassified areas, and vice versa. Different from 

the concept proposed by Mitchell et al. (2008), Table 2 shows that the first closest distance has positive relationship 

with the 
fW ; however, the second closest distance does not. This result implies that the first closest distance may be 

the better measure for uncertainty estimation of image classification.  

 

The uncertainty estimation map for image classification can be generated by summing up all 
fW

 
value layers (Fig. 3). 

The uncertainty estimation map was classified into five levels: very low, low, uncertain, high and very high potential 

based on the natural-breaks method. Compared the original image in Fig. 1 with the uncertainty estimation map in Fig. 

3, hazy areas generally show higher potential level of misclassification, which matches our assumption; the urban 

areas also show higher potential level than the other land features, which corresponds to the low accuracy of urban 

areas in Table 1. However, model assessment with the receiver operating characteristics (ROC) shows the area under 

curve (AUC) is 0.576. We speculate the low AUC may result from two reasons. First, the areas with ground truth data 

concentrate in the clear part rather than the hazy areas; meanwhile, the area proportion of the cropland class is much 

larger than the other classes. Second, we have not considered other factors dominating the classification uncertainty 

such as shadow caused by cloud and high land features.  

 

4.  CONCLUSIONS 

 

This study provides an alternative solution for uncertainty estimation of image classification. Future applications 

include semiautomatic classification with human-computer interaction. In other words, the most possible 

misclassified areas can be defined for the artificial classification after the automatic approach. Future studies can 

focus on three issues. First, the proposed WoE model should apply to different study areas with more factors included. 

Second, the reclassification of each factor and the uncertainty estimation result would be a tricky step in the WoE 

model. Different reclassification method can lead different result. More objective substitute step has to be proposed to 

improve this uncertainty. Finally, methodologies of uncertainty estimation suitable for other classifiers are also 

necessary to develop for practical use.  



 
Table 1 The error matrix of the hybrid classification result. 

    Reference Data 

    Urban Cropland Grassland Water User's Acc. 

Classified 

Urban 255 3480 831 2 5.58% 

Cropland 115 358102 9727 42 97.31% 

Grassland 224 78967 32864 27 29.32% 

Water 0 197 26 1977 89.86% 

Producer's Acc. 42.93% 81.25% 75.64% 96.53% 80.77% 

 
Table 2 Summary of the evidence classes identified as indicators for the misclassified areas (only two of the factors 

are shown here). 
Factor Class Npix1 Npix2 Npix3 Npix4 W

+
 W

-
 Wf 

First Closest Distance 1 1 46837 2173 1079038 -4.545  0.002  -4.547  

 2 1048 45789 57090 1024121 -0.859  0.032  -0.890  

3 29387 17450 698861 382350 -0.030  0.052  -0.082  

4 13625 33212 272478 808733 0.144  -0.053  0.197  

5 2777 44060 50609 1030602 0.236  -0.013  0.250  

Second Closest Distance 1 1 46837 466 1080745 -3.005  0.000  -3.005  

 2 49 46788 6925 1074286 -1.812  0.005  -1.817  

3 20042 26795 440834 640377 0.048  -0.035  0.083  

4 21540 25297 493483 587728 0.008  -0.006  0.014  

5 5206 41631 139502 941709 -0.149  0.020  -0.169  

 

 
Fig. 2 Factors for the WoE model: (a) shows the degree 

of haze influence; and (b) to (d) represent the 

Mahalanobis distances to the first, second and third 

closest clusters. 

 
Fig. 3 Uncertainty estimation of image classification 

generated from the WoE model. 
 

 

 

 

 

(a) (b) 

(c) (d) 

0 20 4010

km

´



5.  REFERENCES 

 

[1] Aboye, S.A., 2009. Slope stability analysis using GIS and numerical modeling techniques. In: Physical Land 

Resources (p. 145). Brussels: University Ghent. 

[2] Barrett, B., Nitze, I., Green, S., and Cawkwell, F., 2014. Assessment of multi-temporal, multi-sensor radar and 

ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sensing of 

Environment, 152(0), pp. 109-124. 

[3] Binaghi, E., Gallo, I., and Pepe, M., 2003. A cognitive pyramid for contextual classification of remote sensing 

images. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 41(12), pp. 2906-2922. 

[4] Binaghi, E., Luzi, L., Madella, P., Pergalani, F., and Rampini, A., 1998. Slope instability zonation: a Comparison 

between certainty factor and fuzzy Dempster–Shafer approaches. Natural Hazards, 17(1), pp. 77-97. 

[5] Bonham-Carter, G.F., Agterberg, F.P., and Wright, D.F., 2013. Integration of Geological Datasets for Gold 

Exploration in Nova Scotia. Digital Geologic and Geographic Information Systems (pp. 15-23): American 

Geophysical Union. 

[6] Chander, G., and Markham, B., 2003. Revised Landsat-5 TM radiometric calibration procedures and 

postcalibration dynamic ranges. Geoscience and Remote Sensing, IEEE Transactions on, 41(11), pp. 2674-2677. 

[7] Chander, G., Markham, B.L., and Barsi, J.A., 2007. Revised Landsat-5 Thematic Mapper Radiometric 

Calibration. Geoscience and Remote Sensing Letters, IEEE, 4(3), pp. 490-494. 

[8] Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 

20(1), pp. 37-46. 

[9] Comber, A., Fisher, P., Brunsdon, C., and Khmag, A., 2012. Spatial analysis of remote sensing image 

classification accuracy. Remote Sensing of Environment, 127, pp. 237-246. 

[10] Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote 

Sensing of Environment, 37(1), pp. 35-46. 

[11] Cristóbal, G., and Gabarda, S., 2007. Cloud covering denoising through image fusion. Image and Vision 

Computing, 530, pp. 523-530. 

[12] Dahal, R., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., and Nishino, K., 2008. GIS-based 

weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility 

mapping. Environmental Geology, 54(2), pp. 311-324. 

[13] Devkota, K., Regmi, A., Pourghasemi, H., Yoshida, K., Pradhan, B., Ryu, I., Dhital, M., and Althuwaynee, O., 

2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in 

GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), pp. 

135-165. 

[14] Feng, C., Ma, J.-w., Dai, Q., and Chen, X., 2004. An improved method for cloud removal in ASTER data change 

detection. In: Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE 

International (pp. 3387-3389 vol.3385) 

[15] Fisher, P.F., 1994. Hearing the Reliability In Classified Remotely Sensed Images. Cartography and Geographic 

Information Systems, 21(1), pp. 31-36. 

[16] Gabarda, S., and Cristóbal, G., 2007. Cloud covering denoising through image fusion. Image and Vision 

Computing, 25(5), pp. 523-530. 

[17] Helmer, E.H., and Ruefenacht, B., 2005. Cloud-Free Satellite Image Mosaics with Regression Trees and 

Histogram Matching. Photogrammetric Engineering and Remote Sensing, 71, pp. 1079-1089. 

[18] Issues, R., Fenstermuker, L.K., McGwire, K.C., and Tinney, L.R., 1991. Remote sensing and geographic 

information system data integration: error sources and research issues. PE & RS, 57, pp. 677-687. 

[19]Jenks, G.F., and Coulson, R.C., 1963. Class intervals for statistical maps. International Yearbook of Cartography, 

3, pp. 119-134. 

[20] Kaiming, H., Jian, S., and Xiaoou, T., 2011. Single Image Haze Removal Using Dark Channel Prior. Pattern 

Analysis and Machine Intelligence, IEEE Transactions on, 33(12), pp. 2341-2353. 

[21] Lan, H.X., Zhou, C.H., Wang, L.J., Zhang, H.Y., and Li, R.H., 2004. Landslide hazard spatial analysis and 

prediction using GIS in the Xiaojiang watershed, Yunnan, China. Engineering Geology, 76(1-2), pp. 109-128. 

[22] Loosvelt, L., De Baets, B., Pauwels, V.R.N., and Verhoest, N.E.C., 2014. Assessing hydrologic prediction 

uncertainty resulting from soft land cover classification. Journal of Hydrology, 517(0), pp. 411-424. 

[23] Meng, Q., Borders, B.E., Cieszewski, C.J., and Madden, M., 2009. Closest Spectral Fit for Removing Clouds and 

Cloud Shadows. Photogrammetric Engineering and Remote Sensing, 75(5), pp. 569-576. 

[24] Mitchell, S.W., Remmel, T.K., Csillag, F., and Wulder, M.A., 2008. Distance to second cluster as a measure of 

classification confidence. Remote Sensing of Environment, 112(5), pp. 2615-2626. 

[25] Pourghasemi, H., Pradhan, B., Gokceoglu, C., Mohammadi, M., and Moradi, H., 2012. Application of 

weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at 

Haraz watershed, Iran. Arabian Journal of Geosciences, pp. 1-15. 



[26] Regmi, A., Devkota, K., Yoshida, K., Pradhan, B., Pourghasemi, H., Kumamoto, T., and Akgun, A., 2014. 

Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in 

landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), pp. 725-742. 

[27] Richter, R., 1996. Atmospheric correction of satellite data with haze removal including a haze/clear transition 

region. Computers & Geosciences, 22(6), pp. 675-681. 

[28] Shiu, Y.-S., Lin, M.-L., and Chu, T.-H., 2011. Mapping and recovering cloud-contaminated area in multispectral 

satellite imagery with visible and near-infrared bands. In: Geoscience and Remote Sensing Symposium 

(IGARSS), 2011 IEEE International (pp. 543-546) 

[29] Tehrany, M.S., Pradhan, B., and Jebur, M.N., 2014. Flood susceptibility mapping using a novel ensemble 

weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, pp. 332-343. 

[30] Turner, M.D., and Congalton, R.G., 1998. Classification of multi-temporal SPOT-XS satellite data for mapping 

rice fields on a West African floodplain. International Journal of Remote Sensing, 19(1), pp. 21-41. 

[31] Van der Wel, F.J.M., Van der Gaag, L.C., and Gorte, B.G.H., 1998. Visual exploration of uncertainty in 

remote-sensing classification. Computers & Geosciences, 24(4), pp. 335-343. 

[32] Wang, F., 1990. Fuzzy Supervised Classification of Remote Sensing Images. IEEE TRANSACTIONS ON 

GEOSCIENCE AND REMOTE SENSING, 28, pp. 194-210. 

[33] Yong, D., Guindon, B., and Cihlar, J., 2002. Haze detection and removal in high resolution satellite image with 

wavelet analysis. Geoscience and Remote Sensing, IEEE Transactions on, 40(1), pp. 210-217. 

[34] Zhang, Y., Guindon, B., and Cihlar, J., 2002. An image transform to characterize and compensate for spatial 

variations in thin cloud contamination of Landsat images. Remote Sensing of Environment, 82(2–3), pp. 173-187. 

[35] Zhang, Z.J., Yang, Z.X., Zhang, P., Mao, Z.J., and Hao, J.Y., 2009. Hierarchical network-based safety 

assessment decision support system for thermal power plants. In: Networking, Sensing and Control, 2009. 

ICNSC '09. International Conference on (pp. 592-596). Okayama City, Japan 

 


