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ABSTRACT: Point-cloud clustering is an essential technique for modeling massive point clouds. We focus on the 
region-based point clustering to extract a polygon from a massive point cloud. In region-based clustering, Random 
Sample Consensus (RANSAC) is a suitable approach for estimating surfaces. However, local workspace selection is 
required to improve a performance in a surface estimation from a massive point cloud. Moreover, with conventional 
RANSAC, it is hard to determine whether a point lies inside or outside a surface. In this paper, we propose a method 
for panoramic rendering-based polygon extraction from indoor mobile LiDAR data. Next, we confirm that our 
proposed methodology can achieve polygon extraction through point-cloud clustering from an indoor environment. 
 
1. INTRODUCTION 
 
Point-cloud clustering is an essential technique for modeling massive point clouds acquired with a terrestrial laser 
scanner or mobile laser scanner. There are three clustering approaches in point-cloud clustering: model-based 
clustering (Boyko et al. 2011), edge-based clustering (Jiang et al. 1999), and region-based clustering (Vosselman et al. 
2004). Edge-based and region-based clustering are often used to model unknown objects (Tsai et al. 2010). These 
approaches also focus on geometrical knowledge (Pu, et al. 2009) and 2D geometrical restrictions, such as the depth 
from a platform (Zhou, et al. 2008) and discontinuous point extraction on each scanning plane from the mobile 
mapping system (Denis et al. 2010) to extract simple boundaries and features in urban areas. 
Point-cloud data acquired in urban areas and indoor environments often include many complex features with unclear 
boundaries. Thus, we focus on the region-based point clustering to extract a polygon from a massive point cloud. In 
region-based clustering, Random Sample Consensus (RANSAC) (Schnabel et al. 2007) is a suitable approach for 
estimating surfaces. However, local workspace selection is required to improve a performance in a surface estimation 
from a massive point cloud. Moreover, with conventional RANSAC, it is hard to determine whether a point lies inside 
or outside a surface.  
In this paper, we propose a method for panoramic rendering-based polygon extraction from indoor mobile LiDAR 
data. First, we propose a point-cloud clustering methodology for polygon extraction on a panoramic range image 
generated with point-based rendering from a massive point cloud. Next, we describe an experiment that was 
conducted to verify our methodology with an indoor mobile mapping system. Finally, we confirm that our proposed 
methodology can achieve polygon extraction through point-cloud clustering from a complex indoor environment. 
 
2.  METHODOLOGY 
 
Figure 1 shows our proposed methodology. It consists of: (1) viewpoint decision for point-based rendering; (2) 
point-based rendering; (3) normal vector clustering for surface estimation; (4) point-cloud interpolation using a 
rectangular template; and (5) point tracing. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The five components of processing flow 
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2.1 Viewpoint decision for point-based rendering 
 
Viewpoints are selected in the random point cloud for point-based rendering. The viewpoints are selected in 
point-cloud data through two steps. In the first step, an orthobinary image is generated from the point cloud to 
represent a rough floor surface as a viewpoint candidate. In the next step, the orthoimage is eroded with morphology 
processing to generate a viewpoint candidate network. Intersections on the network are selected as the viewpoints for 
point-based rendering. 
 
2.2 Point-based rendering 
 
Point-cloud visualization has two issues. The first is the near-far problem caused by distance differences between the 
viewpoint and the scanned points. The second is the transparency effect caused by rendering hidden points among 
near-side points. These effects degrade the quality of a point-cloud visualization. Splat-based ray tracing (Linsen et al. 
2007) is a methodology that generates a photorealistic curved surface on a panoramic view using normal vectors from 
point-cloud data. The curved-surface description is inefficient in representing urban and natural objects as 
Geographical Information System data. Thus, we have applied a point-based rendering application with a simpler 
filtering algorithm (Nakagawa 2013) to generate panoramic range images from a random-point cloud. The processing 
flow of point-based rendering is described in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Point-based rendering 
 
First, the point cloud is projected from 3D space to panorama space. This transformation simplifies viewpoint 
translation, filtering, and point-cloud browsing. The panorama space can be represented by a spherical, hemispherical, 
cylindrical, or cubic model. Here, the cylindrical model is described for wall modeling. The measured point data are 
projected onto a cylindrical surface, and can be represented as range data. The range data can preserve measured point 
data such as a depth, X, Y, Z, and some processed data in the panorama space in a multilayer style.  
Second, the generated range image is filtered to generate missing points in the rendered result using distance values 
between the viewpoint and objects. Two types of filtering are performed in the point-based rendering. The first is a 
depth filtering with the overwriting of occluded points. The second is the generation of new points in the no-data 
spaces in the range image. New points are generated with the point tracking filter developed in this study. 
Moreover, a normal vector from each point is estimated in the range image. First, a point and its neighbors in the range 
image are selected. Second, triangulation is applied to these points as vertexes to generate faces. Then, the normal 
vector on each triangle is estimated using 3D coordinate values of each point. In this research, an average value of 
each normal vector is used as the normal vector of a point. These procedures are iterated to estimate the normal 
vectors of all points. 
 
2.3 Normal vector clustering for surface estimation 
 
Normal vectors of all points are grouped to detect regions in a range image as a point-cloud classification. We applied 
multilevel slicing as a simple algorithm to classify normal vectors. The accuracy of point-cloud classification can be 
improved with several approaches such as the Mincut, Markov network-based, and fuzzy-based algorithms. 
Moreover, building knowledge is used as a restriction in the normal vector and point-cloud classification. In general, 
walls in a room and building consist of parallel and orthogonal planes. Thus, four clusters in a horizontal direction are 
enough to detect walls in a general indoor environment. Although cylindrical surfaces are divided into some clusters, 
these surfaces can be reconstructed using surface merging. The processing flow of normal vector clustering with 
restrictions is described below. First, stronger peaks are extracted from a histogram of normal vectors. More than one 
strong peak is required to detect seed points in each approximate 90° change in horizontal direction. Next, boundaries 
of clusters are generated from the peaks of the histograms. Then, the normal vectors and point clouds are grouped into 
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four clusters. Finally, initial 3D surfaces are estimated from the grouped normal vectors and point cloud. 
 
2.4 Point-cloud interpolation with a rectangular template 
Estimated 3D initial surfaces are refined in a point-cloud interpolation procedure. When flat and cylindrical surfaces 
are projected into a range image based on a cylindrical model, these surfaces are represented as rectangles with the 
following two restrictions. The first restriction is that points have the same X- and Y-coordinate values along the 
y-direction in the range image. The second restriction is that the points have the same Z-coordinate values along the 
x-direction in the range image. Based on these restrictions, point interpolation is applied along the x- and y-directions 
in the range image, as shown in Figure 3. The point interpolation is as follows. First, a rectangular template is fitted to 
projected points in a range image. Next, missing points are detected in the rectangular template. Finally, the missing 
points are interpolated using neighboring points. When other objects exist in a rectangular template, the overlapped 
area is excluded from point interpolation. 
 
 
 
 
 
 
 
 
 
 

Figure 3. Point-cloud interpolation with a rectangular template in a range image 
 
2.5 Point tracing 
 
Boundaries of features can be estimated from the refined surfaces in a range. Moreover, 3D polygons can be extracted 
with topology estimation using these boundaries in the range image. In this procedure, a point tracing is required to 
connect points in 3D space along the boundary, as shown in Figure 4. In general, least squares fitting and polynomial 
fitting are applied to extract straight and curved lines from points. However, these approaches require a decision 
whether straight lines or curved lines are to be extracted before the fitting procedure. In this paper, we wish to extract 
polygons with a combination of straight and curved lines. Thus, we propose point tracing based on the region-growing 
approach to extract complex geometry as follows. First, a topology of points is estimated in a range image. Next, a 
position for the next point is checked after a seed-point selection. In this step, the position is checked to find whether 
a possible next point exists or not within a candidate area for point tracing. These steps are then iterated until the 
geometry is closed. Finally, 3D points are connected to represent a smooth 3D polygon. 
 
 
 
 
 
 
 
 
 

Figure 4. Point tracing 
 
3. EXPERIMENT 
 
An entrance foyer consisting of a large room (8.72 m × 54.00 m width × 4.10 m height) in our university was selected 
as our study area (see Figure 5). The study area consisted of flat and cylindrical walls, square and cylindrical pillars, a 
grilled ceiling, doors with glass, and windows. These objects were representative flat and cylindrical surfaces. In the 
experiment, we used the Trimble Indoor Mobile Mapping System (TIMMS) integrated with an Inertial Measurement 
Unit (POS LV, Applanix), a wheel encoder, a LiDAR system (TX5, Trimble), and an omnidirectional camera 
(Ladybug 5, Point Grey) (see Figure 6). We acquired a 660-million color point cloud with TIMMS (see Figure 7). 
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Figure 5. Study area 
 
 
 
 
 
 
 
 
 
 

Figure 6. TIMMS 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Acquired colored point cloud 
 
In our experiment, 64 points were extracted as viewpoint candidates for point-based rendering, as shown in Figure 8. 
The point cloud taken from TIMMS was rendered from these viewpoints. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Viewpoint candidates 
 
Figure 9 shows results after point-based rendering and point clustering from a viewpoint. Figure 9 includes a depth 
image, a filtered depth image, normal vectors, labeled surfaces, and initial surfaces (overlay of depth edge and labeled 
surfaces). Each vertical axis shows height direction and each horizontal axis shows direction. Intensity values in the 
depth image and filtered depth image indicate the depth from the viewpoint. Moreover, intensity values in the normal 
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vectors and labeled surfaces indicate the horizontal direction of the point cloud. In addition, color values in the initial 
surfaces indicate labels of surfaces. In this experiment, spatial resolution was set as 0.2° in the horizontal direction 
and 2 cm in the height direction. 
Figure 10 shows a rendered point cloud from a viewpoint in 3D space. The left image shows the input point cloud and 
the right image shows a result after polygon extraction. Processing time for the panoramic image conversion and 
polygon extraction was several minutes in total for each viewpoint using an Intel core i7 2.80 GHz processor with 
MATLAB (single thread). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  DISCUSSION 
 
Parts of the results of polygon extraction from the point cloud are shown in Figure 11. This figure includes examples 
of general building features, such as a flat wall, a door, and a cylindrical wall. Each row shows a result of point-cloud 
visualization and extracted boundaries. We have confirmed that point-cloud interpolation in a range image achieved 
spike noise filtering and geometry smoothing. Moreover, we have confirmed that noise such as the pedestrian was 
also successfully filtered from the point cloud. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Parts of results of polygon extraction from point cloud 
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The left image in Figure 12 shows integrated results for polygon extraction from 64 viewpoints. Our approach 
extracted 892 polygons from the point cloud fully automatically. We also conducted manual editing to evaluate the 
performance of polygon extraction. The right image in Figure 12 shows the result after editing. We confirmed that 
863 polygons were extracted from the point cloud successfully. We deleted 29 polygons as failures in the polygon 
extraction. Thus, the success rate of polygon extraction was 97% (863/892) in this experiment. As shown in the left 
image in Figure 12, some polygons that were extracted were failures. Our investigation showed that these failures 
were caused by LiDAR measurement noise, such as light reflection errors and moving object measurement. Although 
noise was almost eliminated, the remained noise in the range image affected the point-cloud interpolation. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Integrated results in polygon extraction from 64 viewpoints (left image) and the result after manual editing 
(right image) 
 
5. SUMMARY 
 
We have proposed a method for panoramic rendering-based polygon extraction from indoor mobile LiDAR data. Our 
aim was to improve region-based point cloud cluster modeling after point-cloud registration. Our proposed 
methodology consisted of the viewpoint decision for point-based rendering, the point-based rendering, the normal 
vector clustering for surface estimation, the point-cloud interpolation with a rectangular template, and point tracing. 
Next, we described an experiment that was conducted to verify our methodology with an indoor mobile mapping 
system (TIMMS) in an indoor environment that included flat and cylindrical surfaces. In this experiment, we 
extracted wall -surfaces using a rendered point cloud from 64 viewpoints over a wide indoor area. Finally, we 
confirmed that our proposed methodology could achieve polygon extraction through point-cloud clustering from a 
complex indoor environment. 
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