Volume Data Images Optimalization in Permanent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) Technique for Land Subsidence Estimation

Yudo Prasetyo ${ }^{1}$, Ishak H. Ismullah ${ }^{2}$, Hasanudin Z. Abidin ${ }^{3}$ and Ketut Wikantika ${ }^{4}$
${ }^{1}$ Universitas Diponegoro,
Jl. Prof. DR. Soedharto, SH., Semarang, Jawa Tengah, yudopotter@yahoo.com
${ }^{2}$ Institut Teknologi Bandung,
KK InSIG lt.3, Jl. Ganesha no.10, Bandung, Jawa Barat, ismulah@gd.itb.ac.id
${ }^{3}$ Institut Teknologi Bandung,
KK Geodesi lt.4, Jl. Ganesha no. 10, Bandung, Jawa Barat, hzabidin@gd.itb.ac.id
${ }^{4}$ Institut Teknologi Bandung,
KK InSIG lt.3, Jl. Ganesha no.10, Bandung, Jawa Barat, wikantika@yahoo.com

Abstract

Since the introduction of the persistent scatterer technique (PS-InSAR) in the early 1999, the applicability of radar interferometry has incresead considerably. In this research, PS-InSAR technique is proposed to retrieve the volume change of long-term continuously land deformation. This technique is used to analyze subsidence in Bandung City, West Java-Indonesia by assessing 19 ALOS PALSAR images (Japanese L band spaceborne) during the periods of July 2007-February 2011. In this research, data volume images are optimized by reducing set data images with iterative PS-InSAR processing. This PS-InSAR processing chain based on a rigid quality assessment of the estimated parameter like minimum coherence (0.9) and PS density point (200), in order to get an optimum quality of light PS-InSAR (LPS-InSAR) concept technique. Moreover, a strict quality validation of PS-InSAR with other geodetic techniques such as DInSAR and GPS method. The result of validation has result such as $1,4 \pm 1,4$ $\mathrm{cm} /$ year (PS InSAR-DInSAR) and $1,6 \pm 0,7 \mathrm{~cm} /$ year (PS-InSAR-GPS). For land subsidence velocity in Bandung City has result between $0,6 \pm 0,4 \mathrm{~cm} /$ year and 2,1 $\pm 1,2 \mathrm{~cm} /$ year. This research shows a capability of data volume optimalization in PS-InSAR technique as basic concept of LPS-InSAR processing.

Keyword: DInSAR, Geodetic, GPS, Land Subsidence, PS InSAR.

