Deriving Inherent Optical Properties from MERIS imagery and *in situ* measurement using Quasi-Analytical-Algorithm

Wiwin Ambarwulan¹⁾, Widiatmaka²⁾,Syarif Budhiman³⁾

¹⁾ Geospatial Information Agency, Cibinong, Indonesia (w_ambarwulan@yahoo.com)

²⁾ Dept. of Soil Science, Bogor Agricultural University (widiatmaka@yahoo.com)

National Institute of Aeronautics and Space, Jakarta, Indonesia (syarif.budhiman@lapan.go.id)

Abstract

The paper describes Inherent Optical Properties (IOP) of the Berau coastal waters derived from *in situ* measurements and Medium Resolution Imaging Spectrometer (MERIS). Field measurements of optical water, total suspended matter (TSM) and chlorophyll-a (Chl-a) concentrations were carried out during the 2007 dry season. During this periode, only four MERIS data were coincident with *in situ* measurements: August 21, 28 and 31, 2007 and September 15, 2007; and only MERIS of August 31, 2007 was used in this study. The MERIS top-of-atmosphere radiances were atmospherically corrected using the MODTRAN radiative transfer model. The *in situ* optical measurement have been processed into Apparent Optical Properties (AOP), sub surface irradiance. The Remote sensing reflectance of *in situ* measurement as well as MERIS data were inverted into the IOP using quasi-analytical algorithm (QAA). The result indicated that coefficient of determination (R²) of backscattering coefficients of suspended particles (bbp) increased with increasing wavelength, however the R² of absorption spectra of phytoplankton (aph) decreased with increasing wavelength.

Key words: QAA, MODTRAN, sub surface irradiance reflectance, remote sensing reflectance