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ABSTRACT: Remote sensing is the only technology that can systematically monitor 
physical properties of the biosphere over a vast region. However, it is still a challenge to 
make these measures meaningful for ecological research. Here we integrate a remote sensing 
pre-processing/analysis system, Eco-iRS, which consists of three-subsystems: An 
atmospheric correction model, a shadow/cloud removal model and an advanced spectral 
mixture analysis model (AutoMCU). We use atmospheric correction software packages 
(ACORN) to remove the effects of molecular and aerosol scatterings and water vapor 
absorption from an image, and to convert digital raw image data to surface reflectance. 
Contaminations (shadow and cloud cover) in an image can be removed based upon their 
properties in the optical and thermal spectral regions. Finally, we used AutoMCU that 
iteratively unmix each pixel using selected spectral endmembers based upon the rule of 
Monte Carlo simulation. The outcomes of Eco-iRS include green vegetation, 
non-photosynthetically active vegetation and soil fractions. These data are pivotal parameters 
for estimating carbon stocks and fluxes, and determining the impacts of natural and 
anthropogenic perturbations in terrestrial environments. 
 
1. INTRODUCTION 
 
Global climate change was used to be a myth that haunted human-beings implying the road to 
perdition in the foreseeable future. Recently, the Intergovernmental Panel on Climate Change 
(IPCC) has stated that the changes of biosphere are no longer suspicious after investigating 
more than a century of observations acquired from atmosphere, ocean and lands (IPCC, 
2007). Mean surface temperature elevated about 1°C since the industrial revolution and 
atmosphere CO2 concentration has increased from 280 ppm to 380 ppm; and the increase of 
temperature in the next century may not be linear but exponential (Hansen et al., 2006). 

Limited manpower is the main constraint for frequent monitoring and assessment of 
ramifications of global change on ecosystems over a broad region. In most cases, million 
hectares of lands are managed by only a handful of staff. Therefore, an effective monitoring 
protocol is indeed needed. Remote sensing is the only technology that can systematically 
monitor physical properties of the biosphere over a vast region, and it has been heavily 
utilized in the recent decades (DeFries, 2008). However, it is still challenging to make these 
measures meaningful for terrestrial ecological research (Asner et al., 2009). Here we design a 
remote sensing protocol that can produce a set of derived images that are useful for 
monitoring the metabolism of natural settings. 
 



2. SYSTEM REQUIREMENTS 
 
Here we integrate a remote sensing pre-processing/analysis system termed EcoiRS 
(Ecosystem complexity observation by an integrated Remote Sensing system). A similar 
system CLAS (the Carnegie Landsat Analysis System) developed by Asner et al. (2009) was 
used for rapid mapping of forest cover, deforestation and disturbance over vast tropical 
forested regions. EcoiRS expands the applications to include not only other perturbations in 
different biomes such as drought in the temperate zone, and tropical cyclones and alien 
non-native species in tropical and sub-tropical regions, but the ability to quantify carbon 
budgets. The basic requirements for EcoiRS include: (i) Systematicity of data processing 
protocol, (ii) flexibility of satellite images and (iii) applicability to a high performance 
desktop personal computer (PC). A systematic data processing procedure is essential for 
effective analysis of a large volume of remotely sensed data. It would significantly reduce 
human error that could cause cascading effects on outcomes. In many undeveloped or 
developing countries in the tropical and subtropical zones, spaceborne images with public 
assess are the only available remotely sensed data. In additional, land surfaces of the regions 
are frequently covered by cloud cover, which often makes images unusable. Therefore, 
EcoiRS should be able to ingest different type of free satellite images to maximize the 
possibility of monitoring land surfaces. These public satellite data include the Thematic 
Mapper (TM) and Enhanced Thematic Mapper plus (ETM+) on the Landsat platforms, the 
Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and Hyperion 
on Earth Observing 1 (EO-1). Finally, with the advancement of modern technology, the 
performance of a personal computer with a 64-bit Windows operating system (e.g., Windows 
XP 64-bit, Windows 7) is not far away from high performance Linux computer cluster (Asner 
et al., 2008) when dealing with a certain size (e.g., 1 gigabyte) of remotely sensed images but 
at much lower cost. Therefore, it is pivotal to design EcoiRS to be compatible with a personal 
computer that would make it as a feasible tool for research institutes with limited funding 
sources and facility. 
 
3. MODEL DESCRIPTION 
 
EcoiRS consists of three main functions: (i) Atmospheric correction to reduce atmospheric 
effects obscuring land surface reflective properties such as molecular and aerosol scatterings 
and water vapor absorption; (ii) cloud and shadow removal to mask out thick cloud cover and 
shadow generated by terrain and cloud; (iii) spectral mixture analysis to extract sub-pixel 
information of abundance of photosynthetically active vegetation (PV), 
non-photosynthetically active vegetation (NPV) and soil substrate cover fractions (Figure 1). 
Selection of analytical tools to accomplish each task was based upon the principles of 
simplicity, automation and accuracy. 
 
3.1. Atmospheric correction 
 
The software used for EcoiRS to minimize the effects of atmospheric effects within an image 
is the Atmospheric COrrection Now (ACORN, ImSpec, Palmdale, California, USA) version 
6b. ACORN is a MODTRAN4 (MODerate spectral resolution atmospheric TRANSsmittance 
algorithm and computer model version 4) based atmospheric correction tool (Berk et al., 
1999) to produce high quality surface reflectance without ground measurements. ACORN 
provides two main modules for reducing atmospheric effects in multispectral and 
hyperspectral images within the spectral range of 350-2500 nm. EcoiRS switches between 
multispectral and hyperspectral modes when processing Landsat TM/ETM+ and Hyperion 



images, respectively. Note that EcoiRS currently also accepts the MODIS 8-Day 500 m 
surface reflectance product (MOD09A1), but the system would bypass atmospheric 
correction since these images have been atmospherically corrected before data acquisition. 

ACORN requires input images to be converted as 16-bit radiance (W m-2m-1sr-1) before 
further processes. Landsat images obtained from Internet (e.g., the USGS Global 
Visualization Viewer [GLOVIS]: http://glovis.usgs.gov/) are usually in the form of a digital 
number (DN) and it needs to be converted to radiance by referring to coefficients provided by 
the official website (http://landsathandbook.gsfc.nasa.gov/). On the other hand, Hyperion 
downloaded from GLOVIS are at the level of 1GST (radiometrically and geometrically 
corrected data) can be directly used without conversion since the default form of 1GST data 
is in radiance. Most information required for performing atmospheric correction can be found 
in the metadata except for atmospheric water vapor and atmosphere visibility. For the 
multispectral mode, only one value of each parameter can be assigned for each image. 
According to the ACORN user manual (ACORN, 2008), a typical water vapor amount for an 
arid region would be 15 mm and 25 mm for a humid area; and an average visibility is about 
100 km and 20 km for a hazy condition. Therefore, values within these ranges should be 
provided by users. In many cases, users can refer to an international network of precipitable 
water vapor estimation for setting up proper parameters (SuomiNet, 
http://www.suominet.ucar.edu/). For the hyperspectral mode, water vapor is retrieved from 
the image on a pixel-by-pixel basis using the water vapor absorption bands at 940 and/or 
1150 nm and EcoiRS arbitrarily selects both bands for the process. Per pixel visibility is 
estimated from the Hyperion data using nonlinear least-squares spectral fitting between their 
radiance spectra and MODTRAN modeled radiance with the aerosol optical depth as the 
primary fitting parameter. Detailed information of the characteristics and computation 
algorithms of ACORN can be found in Kruse (2004). 
 
3.2. Cloud and shadow removal 
 
Cloud and shadow are main “noises” for remote sensing land surface research that are 
commonly observed in the tropical/subtropical zones and mountainous regions, respectively. 
EcoiRS implements a modified version of Irish et al. (2006) to remove cloud cover from 
Landsat images. Reflectance of cloud cover is relatively high in the visible region (400-700 
nm) especially in the red region (about 600-700 nm). In addition, the temperature is relatively 
lower comparing with other land objects, which can be retrieved by utilizing conversion 
coefficients provided by the Landsat official website. Therefore, we label a Landsat cloud 
pixel if it reflects more than 35% of energy in band 3 (630-690 nm) with image temperature 
greater than 290 ºK (Irish et al. 2006). Since the majority of monitored natural areas are 
highly vegetated, an additional threshold of greenness the Normalized Difference Vegetation 
Index (NDVI) less than 0.5 was set to enhance the algorithm since NDVI is very sensitive to 
cloud cover. For MODIS and Hyperion, only the range of cloud endmembers in the optical 
region (350-2500 nm) for each band was used (n > 1000) to map cloud cover (Table 1) since 
there are lacking of spatially corresponding in sync thermal data available. The criterion of 
for setting values is to subtract one standard deviation from the mean by referring to 
endmember values for each band. Overall, results are satisfactory based upon visual 
assessment. 
 

Shadow can suppress reflectance of land surfaces and introduces uncertainty to the 
analysis. More than 1000 shadow endmembers were selected from Landsat TM and ETM+ (n 
= 20), and Hyperion (n = 35) images. Values below the one standard deviation above the 



mean for each band are defined as shadow pixels. Note that no shadow mask was applied to 
MODIS images since shaded areas are usually not discernible at the spatial resolution of 500 
m.  
  
3.3. Spectral mixture analysis 
 
The core of EcoiRS is AutoMCU (an Automated Monte Carlo Unmixing), which is an 
advanced spectral mixture analysis model. Spectral mixture analysis is a mathematical 
approach often used to derive sub-pixel cover fractions of land surface materials acquired 
from remotely sensed data (Adams et al., 1993). This method is ideal for use in natural 
settings where sub-pixel cover variation is high. Each endmember component contributes to 
the pixel-level spectral reflectance (ρpixel) as the linear combination of endmember (e) spectra: 
 
ρpixel = Σ[ρe●Ce] + ε 

= [ρPV●CPV + ρNPV●CNPV + ρsoil●Csoil] + ε         (1) 
Σ[Ce] = 1.0                (2) 
 
where ρ and C are the reflectance and cover fraction of each endmember (photosynthetically 
active vegetation [PV], non-photosynthetically active vegetation [NPV] and soil), 
respectively, and ε is the error term (eq. 1). Eq. 2 indicates that the endmembers sum to unity. 
Asner et al. (2000) suggested that there were a number of endmember combinations that can 
produce a particular spectral signal, so a wide range of numerically acceptable unmixing 
results for any image pixel were possible. Hence, Automated Monte Carlo Unmixing 
(AutoMCU), a probabilistic spectral mixture analysis technique (Asner and Lobell, 2000; 
Asner and Heidebrecht, 2002) was implemented to account for this natural variability (Asner, 
1998) through iterative random selection of endmember reflectance from ‘bundles’ (Bateson 
et al., 2000). Endmember bundles for NPV and soils can be directly acquired using a field 
spectroradiometer at a 1 nm spectral resolution (Huang et al., 2007). There are two 
approaches to acquire PV endmembers. In some cases, top-layer canopy sunlit leaves can be 
collected by a tree climber or using a shotgun (Martin et al., 2008). Hemispheric leaf spectra 
were generated by an integrating sphere and were also collected using a field 
spectroradiometer (Asner and Martin, 2008); these were converted to canopy reflectance 
using canopy radiative transfer (Li and Strahler, 1992). However, in most cases, it is very 
difficult to collect PV spectra from field due to the high stature of vegetation canopy (e.g., 
tropical rainforest). Therefore, we extracted PV endmembers from atmospherically corrected 
Hyperion images acquired in these settings with extremely high canopy closure. High 
resolution spectra were convolved to match with the spectral profiles of selected images 
(TM/ETM+, MODIS, Hyperion). 

There are two options available for AutoMCU: Multispectral and hyperspectral modes. 
In the multispectral mode, original spectral profiles are used to estimate proportions of PV, 
NPV and soil cover in each pixel. According to Asner et al. (2003) and Huang et al. (2007), 
250 times of repetition for each pixel should be sufficient. Histograms of PV, NPV and 
should be in the shape of normal distribution with high kurtosis (a measure of peakedness), or 
AutoMCU will reject the process and request another round of unmixing. In the hyperspectral 
mode (for Hyperion only), AutoMCU uses the tied-shortwave infrared spectra technique. The 
difference of spectral signatures among PV, NPV and soils is most distinguishable within a 
part of shortwave infrared region (2000-2400 nm), and it can be further amplified by ‘tying’ 
these spectra at 2022 nm (Asner and Lobell, 2000). Repetition of 250 times of unmixing was 
also applied for each Hyperion pixel. 



 
 
Figure 1. A conceptual model for EcoiRS. The brighter pixels in (d) indicate higher values. 
 
3. MODEL APPLICATIONS 
 
The main outcomes EcoiRS include PV, NPV and soil cover fractions. These data are crucial 
parameters for estimating carbon stocks (Huang et al., 2007; Huang et al., 2009) and fluxes 
(Huang et al., 2008; Huang and Asner, 2010) in terrestrial environments, and may be useful 
for determining the impacts of natural (e.g., tropical cyclones) and anthropogenic 
perturbations (Asner et al., 2009). 
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