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ABSTRACT: After an earthquake, the image-based interpretation methods are powerful tools for detection and 
classification of damaged buildings. In this paper several methods for extracting imagery features are examined. 
Experiments are performed on two datasets of the Kobe and Bam earthquakes. We use only the post-earthquake 
images and the pre-earthquake images are not needed. The regions of interest are delineated with the aid of prismatic 
models of buildings. First and second order statistical descriptors including standard deviation, entropy and 
homogeneity are evaluated. They are computed for small windows around pixels and average values were assigned to 
each building polygon. The assessments show that this kind of descriptors are less sensitive to soft damage and suffer 
from miscellaneous textures in high-resolution images in urban area. We propose “Regularity indices” to describe the 
appearance of the building as regular or irregular. Regularity indices were defined by taking account of lines 
composition with regards to building footprint. Three kinds of classification methods: k-NN, naïve Bayes and support 
vector machine (SVM) are used and compared. The implemented program extracts all attributes including statistical 
features (average standard deviation, average entropy and homogeneity) and regularity indices for any building 
polygon. Numerical results revealed fairly good performance of the proposed features for collapse detection. The 
classification results are evaluated by a cross-validation method and by an independent visual interpretation test set. 
The results achieved with Bayesian and SVM classifier are better than with the 3-NN classifier. 
 
1. INTRODUCTION 
 
After an earthquake, demolished structures have to be recorded in order to give a map of buildings damage and 
property losses. Photo-interpretation analysis can be a reliable technique for earthquake damage assessment, 
depending on the objectives and the image resolution. Large-scale images show certainly the high level of details 
related to single buildings and small structures and the human interpreter is able to look for the remaining ruins and 
debris from damaged buildings. Automation could be a way for eliminating the time-consuming procedures, which 
are usually carried out by human operators. Change detection techniques can be employed to detect “significant” 
changes while rejecting “insignificant” ones. However, it is necessary to define specific criteria to define how a 
‘change’ is translated to ‘damage’. For this purpose, pictorial attributes like edges, texture or shadows can be 
extracted. For instance, the presence/absence of shadows in a pre/post event pair is a signal of a collapsed building 
(Turker & San, 2004, Vu et al. 2004b, Turker and Sumer 2008) and texture analysis can be conducted for debris 
detection (Sumer and Turker 2005, Rehor and Vögtle 2008). The presence and amount of debris can be translated to 
damaged structures and rate of its demolition. The type of debris in terms of its material, shape and formation is 
generally complex and its reflectance characteristics can be very different in images. Nevertheless, the image 
descriptors, which provide measures of properties such as smoothness, coarseness and regularity, can intuitively be 
utilized for debris detection. However, there is no clear definition of “debris texture” and it is often qualitatively 
characterized by its coarseness in the sense that a patch of rubbles is coarser than a patch of intact building roof under 
the same viewing condition. Various approaches have been used to investigate the textural and spatial structural 
characteristics of image data for damage detection, including first and second order statistical features, wavelet 
transform, morphological descriptors, variograms and density or dissimilarity of edge pixels (Rathje et al. 2005, 
Shirzaei et al. 2006, Sertel et al. 2007, Rehor and Vögtle 2008, Rezaeian & Gruen 2011a).  
 
Our goal in this paper is to generate appropriate features and comparing classification methods for detection of 
damaged buildings. In this approach, after extracting the building position from vector maps, by measuring and 
comparing different textural features for extracted buildings in both pre- and post-event images, building conditions 
are extracted. Three kinds of classification methods: k-NN, naïve Bayes and support vector machine (SVM) are used 
and compared. 
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2. IMAGE FEATURES 
 
2.1 Image preparation 
 
Two datasets were obtained from aerial images. In our research, parts of the Kobe and Bam cities are selected as study 
regions. The calibration reports of the cameras and ground control points were available and used as input information 
for the interior and exterior orientation procedures. A visual inspection of building damages was conducted, based on 
stereo pairs of aerial photos to generate reference data and for extracting prismatic model of buildings. The test 
regions encompass 637 and 890 houses in Kobe and Bam cities, respectively. 
  
Furthermore, we apply an adaptive histogram equalization technique in which histograms are generated only at a 
rectangular grid of points and the mappings at each pixel are generated by interpolating mappings of the four nearest 
grid points (Gonzalez and Woods 2002). In addition, optical images which are taken just after an earthquake are 
subject to noise and haze of dust and smoke. Debris pattern generally contains high-frequency components and it is so 
difficult to distinguish from noise added to image, which similarly has a high spatial frequency spectrum. Since linear 
low-pass filtering may degrade feature generation results, the images are smoothed only with a 3by3 non-linear 
median filter in order to limit impulse noise effects. 
 
2.2 Features generation 
 
2.2.1 Statistical descriptors: First, we select the following descriptors as quantitative measures: 
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The first order histogram estimate (P(b), b represents quantized amplitude gray-level) is simply computed in a 
neighborhood window centered about (i,j). The standard deviation is a measure of gray-level contrast that can be used 
to represent relative smoothness. Entropy is a measure of histogram uniformity. The closer to the uniform distribution 
(P(b)=constant) the higher the E.  For every point within the building area, small windows around the points are 
selected and standard deviation and entropy are computed. Also, Haralick et al. (1973) have proposed a number of 
texture features based on the two-dimensional histogram of pixel pairs (P(bi,bj)). For our purpose, the following useful 
descriptor is selected to: 
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‘H’ returns a value that measures the closeness of elements to the diagonal matrix (‘H’ is 1 for a diagonal matrix). In 
order to analysis the texture of building image, average standard deviation (ASD) and average entropy (AE) together 
with homogeneity are computed and assigned to each building polygon. 
 
2.2.2 Regularity indices: For the purpose of improving the classification of building damage types, especially to 
detect debris and rubbles, we present two kinds of features using linear features. Direction, interconnection and clarity 
of lines may be key signal for human perception to discern devastated structures. The main characteristic feature for 
uncollapsed building can be the well-ordered distinct lines and their “regularity”. The degree of geometric regularity, 
not only at the building level itself but also at higher levels of spatial hierarchy can also be exploited. To measure 
“lines regularity” we define criteria that give a numerical index.  
 
Line detection of standing buildings exhibits a sketchy outlines draft. The composition of lines could be a remarkable 
cue of scene regularity. Here, regularity might be defined based on line directions with respect to the predefined 
building model. Regularity indices are defined for exterior and interior zones: the narrow strip around the border of 
building and the region surrounded by building polygon (Figure 1). At the border of the building polygon, the output 
lines are compared with vector lines, which being already extracted from pre-event images. In order to evaluate the 
degree of fit of line segments to the pre-defined polygons two parameters were used: 1) the angle between segmented 
lines and actual polygon lines (α) 2) the length of segmented lines (l). To measure the degree of the match between the 
detected segment lines and delineated vectors of building polygons, the following formula is established for the first 
regularity index: 
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The function f describes the rate of fit between detected line segments and actual polygon lines. The second regularity 
index (RI2) is defined based on density of line segments. For this index, those lines within building polygon which 
their direction are not close to the direction of polygon lines would be selected and density of pixels is calculated 
(Figure 1). In comparison with the conventional statistical features, regularity indices show better results. 
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Figure 1: Regularity indices (RI1, RI2) are computed for exterior and interior regions 

 
2.3 Features evaluation 
 
In this section, the performances of proposed features are evaluated using a figure-of-merit method by “Fisher 
discriminant ratio” (FDR) and “B-distance” criteria (Theodoridis & Koutroumbas 2003). The values of the criteria are 
computed for each of the features and then are ranked in order of descending values. The best values can describe the 
classification effectiveness of individual features or feature vectors. Features of potential interest include the average 
standard deviation (ASD), average entropy (AE), homogeneity (H) and the proposed regularity indices (RI1, RI2). 
These features are computed for each one of the building polygons from the reference data (“Collapsed” and 
“Uncollapsed” visually classified buildings). Fisher discriminant ratio and one-dimensional B-distance 
measurements of these imagery features are calculated and presented in Table 1.  
 

Table 1: FDR and B-distance of proposed features for bi-level classification (“Collapsed” and “Uncollapsed”) 
Kobe data set 

 RI2 RI1 H AE ASD 
FDR 2.43 1.96 1.06 0.75 0.73 
B-distance 0.68 0.50 0.30 0.24 0.18 

Bam data set 
 RI1 RI2 ASD AE H 
FDR 1.10 0.89 0.68 0.15 0.05 
B-distance 0.35 0.23 0.17 0.10 0.04 

 
In this table the discrimination properties of individual features are presented. Both B-distance and FDR 
measurements indicate that the regularity indices are marginally more effectual separators for “Collapsed” and 
“Uncollapsed” buildings categories. In Bam city most buildings were made of clay bricks, and resulting textural 
features are not robust separators, although using boundary feature (RI1) yields the best result with the largest 
B-distance. 
 
3. AUTOMATIC COLLAPSE DETECTION USING POST-EVENT IMAGERY DATA 
 
Figure 2 depicts a flowchart of operations for collapse detection using imagery features. Here, we use only the 
post-earthquake images and the pre-earthquake images are not needed. The regions of interest are delineated with the 
aid of prismatic model of buildings. The implemented program extracts all attributes including statistical features 
(average standard deviation, average entropy and homogeneity) and regularity indices for any building polygon.  
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Figure 2: The processing flowchart collapse detection using post-event imagery features 

The variables resulting from this procedure are calculated for a triplet set of post-event aerial images and final 
normalized features are generated from average values. Our study compares three classification methods (k-Nearest 
Neighbors, Bayesian and Support Vector Machines) for the production of collapse maps from aerial images. 
 
After performing the classification, it is important to evaluate the quality of the results. The ideal process is to have an 
independent set of test data. The training data split into two sets: one to be used for training and the other for 
validation. The classification results were evaluated by a cross-validation method and by an independent visual 
interpretation test set. We used random sub-sampling validation technique. This method randomly splits the dataset 
into training and validation data. For each such split, the classifier is retained with training data and validated on the 
remaining data. The process is repeated for each of the subsets as validation.  The error matrix from each split can then 
be averaged. In this method all observations are used for both training and validation. The goal of cross-validation is 
to estimate the expected level of accuracy to a data set that is independent of the data that were used to train the model. 
Primarily, a bi-level classification is tested in order to generate a map of “Collapsed” and “Uncollapsed” buildings. 
 
The procedures of image enhancement and orientation are performed by commercial software but features extraction 
- especially line detection algorithm (Hierarchical Permissive Hough Transform) - are implemented with customized 
codes (Rezaeian & Gruen 2011b).  We used combination codes of C++ and Matlab (ver. 7.4.0 R2007a) to implement 
the described procedures in Figure 2.  Statistical features as well as the second regularity index (RI2) are calculated 
only for pixels within building polygons so that only roof textures are employed for classification. However, the first 
regularity index (RI1) looks for intact lines around the building footprint. Therefore, the collapsed buildings such as 
“pancake” and “overturned” that shifted from initial position can be detected using this attribute (RI1). 
 
4. NUMERICAL RESULTS AND DISCUSSION 
 
The k-nearest neighbor classifier was conducted with Euclidian distance metric. A direct majority vote from the 
nearest three neighbors (k = 3) was employed. The experiments showed that the performance of k-NN was not 
sensitive to the exact choice of k when k was large. Although for small values of k, the k-NN algorithm was more 
robust than the 1-NN algorithm. We used a linear form of Bayesian classifier using a pooled estimate of covariance 



matrix. The experiments showed that for our data set there is no significant preference between quadratic or linear 
form of this classifier. The major advantage of the naïve Bayes classifier is its short computational time for training. 
We used Matlab ready functions for SVM classification using a linear kernel. For training, a Sequential Minimal 
Optimization (SMO) method is conducted. SMO is a simple algorithm, which is conceptually incomplex, easy to 
implement without any extra matrix storage and without using numerical quadratic programming optimization at all.  
 
Table 2 present average error matrix and accuracy assessments for the three classifiers: 3-NN, Bayesian and SVM. 
Sample buildings (fifteen buildings for each class) were acquired as a training set. Validations are performed 100 
times each time with new training data set for obtaining average values of error matrix components.  
 

Table 2: Average error matrix of 100 times cross validation for collapse detection using image features 
Visual interpretation Input data: post-event aerial 

images + building polygons Kobe Bam 

3-NN classifier Uncollapsed Collapsed Uncollapsed Collapsed 
Uncollapsed 247 51 333 119 

Collapsed 30 309 75 363 
Overall accuracy 87.3% 78.2% 

Bayesian classifier Uncollapsed Collapsed Uncollapsed Collapsed 

Uncollapsed 241 35 340 123 
Collapsed 36 325 68 359 

Overall accuracy 88.9% 78.5% 

SVM classifier Uncollapsed Collapsed Uncollapsed Collapsed 

Uncollapsed 244 36 342 116 
Collapsed 33 324 66 366 

Accuracy Assessment - SVM classifier 
Overall accuracy 89.2% 79.6% 

 
The results achieved with Bayesian and SVM classifier are better than with the 3-NN classifier. While the Bayesian 
classifier performed faster on the learning process, the SVM classifier is faster in the classification process. The 
advantage of Bayesian classifier is the facility to build the classifier. The basic k-NN has usually only a single 
parameter (k), which is relatively easy to tune. Although the SVM shows better overall accuracy, it has more 
parameters than other techniques and the process of training in SVM classifier is more complicate. The size of the 
training set has to be sufficiently large. Table 3 shows results of using different sizes of training data sets for the 
Bayesian classifier. In fact, employing large number of buildings as training data increase the accuracy as well as 
reliability of classifier. Also, using more training data causes difference between the actual accuracy and estimated 
accuracy - calculated based on the training data set - to be decreased. Our experiments revealed that for both the Kobe 
and Bam datasets minimum fifteen buildings per each class could be suitable for training procedure. 
 

Table 3: Average overall accuracies (± std.) and difference between actual and estimated values of 100 times 
cross-validation for various sizes of training sets 

Number of buildings selected as training set for each class  Bayesian classifier 
5 10 15 30 60 100 

Overall accuracy   %81±7 %87±3 %89±2 %90±1 %90±1 %91±1 

K
ob

e Average 
difference between 
estimated accuracy 

and actual 
accuracy 

%16.5 %8.3 %4.9 %2.1 %1.2 %0.3 

Overall accuracy  %70±9 %78±4 %79±2 %81±1 %82±1 %82±0.5 

B
am

 Average 
difference between 
estimated accuracy 

and actual 
accuracy 

%24.4 %10.8 %5.0 %3.2 %1.0 %0.5 



5. CONCLUSIONS 
 
In the course of this research several methods for extracting imagery features were examined. First and second order 
statistical descriptors including standard deviation, entropy and homogeneity were evaluated. The assessments show 
that this kind of descriptors, measuring image amplitude in terms of luminance or tristimulus values, are less sensitive 
to soft damage and suffer from miscellaneous textures in high-resolution images in urban area. Texture is a 
neighborhood property of an image points and therefore, texture measures are inherently dependent on the image 
scale. We aimed to describe the look of building image as regular or irregular. Regularity indices were defined taking 
account of lines composition with regards to building footprint. Experimental results revealed fairly good 
performance of the proposed features for collapse detection. Three kinds of classification methods: k-NN, Bayesian 
and SVM were used and compared. The classification results were evaluated by a cross-validation method and by an 
independent visual interpretation test set. The Support Vector Machine (SVM) classifier is a relatively new method 
that proved to be quite effective for damage detection. One reason for erroneous categorized building is the absence of 
the imagery features in the area where the buildings are hidden in the shadows or occluded by other objects. Besides, 
for complex shapes building borderlines couldn’t be matched exactly with building polygon. It is therefore impossible 
to find line segments corresponding to the line of the building polygon 
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