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ABSTRACT: In a mobile mapping system, the integration of Inertial Navigation System (INS) and Global 
Positioning System (GPS) is widely applied for determining position and orientation. The Kalman filter or Extended 
Kalman Filter (EKF) is popularly used for data fusion estimation. In such those estimation strategies, linearization 
and assuming Gaussian distribution are utilized. However, the fact that the system model and measurement model in 
INS/GPS integration are originally non-linear and the noise arising during operation may be non-Gaussian 
distribution. These characteristics may leads to the low performance of the system utilizing KF or EKF in case of 
highly non-linear model and non-Gaussian noises. This paper investigates on some of non-linear, non-Gaussian 
estimation strategies in order to improve the performance of the system. 
  
1. INTRODUCTION   
 

Mobile mapping system (MMS) refers to a mean of collecting geo-spatial data using mapping sensors mounted 
on a mobile platform. A direct geo-referencing system is applied to transform the coordinates of objects of interest 
from camera frame to the mapping frame. The most common technologies utilized in that system today are satellite 
positioning using the GPS and Inertial Navigation System (INS) using an Inertial Measuring Unit (IMU). Due to the 
cost and size, the high quality IMUs is restricted to use in the commercial MMS. The advance in 
Micro-Electro-Mechanical System (MEMS) technology enables complete inertial units on a chip, composed of 
multiple integrated MEMS accelerometers and gyroscopes. In addition to their compact and portable size, the price of 
MEMS-based is far less than those of high quality IMUs as well, however, due to the lightweight and fabrication 
process, MEMS sensors have large bias, instability and noise, which consequently affect the obtained accuracy of 
MEMS-based IMUs (Huang, 2009). To overcome the limitation of low cost MEMS-based, main two methods are 
popularly investigated in the literature: Using advanced multi-sensor integration strategies and improving estimation 
algorithms in data fusion.  

In integration strategies, commonly, loosely-coupled (LC) is applied. However, in LC, at least four satellites are 
required to help GPS in solving the solution and this requirement may not be satisfied in hostile environments like 
urban canyon areas. To overcome this limitation, tightly-coupled (TC) is investigated. In TC integration mode, GPS 
provide the aid measurement to the INS at observables level such as pseudo range, Doppler signal or carrier phase; so 
that GPS can continuously provide measurement updates even if there are less than four satellites on the sky. 

For data fusion, the Kalman Filter (KF) is known as the optimal estimation tool for data fusion in most of real 
time tracking applications. The restriction of KF is that it can only applied on linear model and Gaussian-distribution 
noises. In INS/GPS integration, the system and measurement model are originally non-linear, therefore EKF is 
popularly applied. In principle, The EKF utilizes the first term of Taylor series expansion of the non-linear function 
and Gaussian noise is assumed, so that in case of highly non-linear functions and non Gaussian noise, the system 
utilizing EKF may perform a poor performance. To improve this situation, this research develops non-linear, 
non-Gaussian estimation strategies and apply them in tightly coupled INS/GPS integration in a mobile mapping 
system.  
 
2.  ESTIMATION ALGORITHMS. 
 
2.1. Theory of Bayesian estimation 

 
Bayesian estimation is the basic theory for the development of most dynamic estimation algorithms. The 

fundamental of Bayesian filtering theory can be described by following:  
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For a dynamic tracking system, generally speaking, the system model with distribution density function 
1 1: 1( | , )k k kP x x z− −  and aid measurement model with distribution density function ( | )k kP z x  can be expressed by 

following equations 
                              1( , )k k k kx f x w−=                                            (1) 
                              ( , )k k k kz h x v=                                              (2) 

 
Where xn

kx R∈ is the state vector at time k. xn
kw R∈ is system noise. zn

kz R∈ is the aid measurement. vn
kv R∈ is 

measurement noises. : x w xn n n
kf R R R× → and : x v zn n n

kh R R R× → are non-linear function of state and 
measurement vectors, respectively.  

The objective of estimation is to determine posterior probability density function (PDF) ( )1:|k kP x z  and its 

inferences including estimates of state vector  kx  and covariance matrix P. For this goal, due to Bayesian filter 
theory, there are two stages of estimation: 

The prediction stage involves using the system model to obtain the prior PDF of the state at time k-1 by 
equation:  

( ) ( ) ( )1: 1 1 1 1: 1 1| | |k k k k k k kP x z P x x P x z d x− − − − −∫=                         (3)       
 
And updating stage: At time step k, aid measurements become available; the prior PDF is updated by following 

equation. 
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From the fundamental of Bayesian estimation theory, several estimation algorithms have been developing and 

applied for INS/GPS integration. 
 

2.2. Particle filter 
 
Based on Bayesian estimation theory and known as Monte Carlo estimation, the principle of the generic particle 

filter can be described as following: 
If we can sample a set of particles 0:{ ; 1,..., }i

kx i N=  from posterior distribution ( )0: 0:|k kP x z , then the estimate 
of this distribution is given by  
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Where ( )

0:
0:i

k
kx dxδ  is Direc delta, N is number of particles. 

Unfortunately, it is often not possible to sample directly from the posterior distribution, but we can use 
importance sampling. Instead of sampling from posterior distribution we sample from a proposal distribution 
( )0: 0:|k kq x z .Then the weighted approximation posterior distribution will be  

 
 ( ) ( )

0:
0: 0:

1

1| i
k

N

xi

i
k k kP x z w dx

N
δ

=
∑=                                       (6) 

 
Where{ ; 1,..., }iw i N= is the weight of the particle 0:

i
kx . It is proportional value of ( )0: 0:|k kp x z  to ( )0: 0:|k kq x z . 

This method is so called Sequential Importance Sampling (SIS). However, a common problem with the SIS particle 
filter is the degeneracy phenomenon (Gordon, 1993). To overcome this problem, Sequence Importance Re-sampling 
(SIR) particle filter is commonly applied. In this method, re-sampling is implemented in the process to check and 
eliminate degeneracy problem. 

In general, the Particle filter has a number of advantages that make them attractive for navigation applications; 
they are non-parametric, can cope with nonlinearities and non-Gaussian noises, and are relatively easy to implement. 
However, there are some issues that make particle filter itself limited it in INS/GPS estimation: Firstly, the choice of 
an optimal proposal PDF to draw samples is difficult to implement; secondly, computational burden is the main 
disadvantages of this algorithm. In addition degeneracy and impoverishment are the other problems in particle filter. 

 



2.3. Unscented Kalman filter 
 
To reduce the computational burden in PF and overcome the limitations of EKF, Julier and Uhlmann (1997) 

proposed the Unscented Kalman Filter (UKF). In this algorithm, a fixed number of minimal points, known as sigma 
points are deterministically generated.    
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Where 1kx − , 1kP − are mean and covariance of state at time k-1, respectively. κ is a scaling parameter and 

1( ( ) )x k iPη κ −+ is the ith row or column of the matrix square root 1( )x kPη κ −+ . iw is the associated weight of the 
sigma point ith. These sigma points are then propagated individually through the nonlinear functions to capture 
posterior mean and covariance accurately. By updating step based on available aid measurements, the estimates of 
state vector and its covariance will be calculated. 

 
2.4. Unscented Particle filter 

 
One of the difficulties in generic particle filter is choosing an importance density for sampling particles. A 

method to overcome this problem is to use an importance density that is a Gaussian approximation to 1 0:( | , )k k kP x x z− . 
In this research, the proposal distribution is chosen to be the Gaussian approximation of 1 0:( | , )k k kP x x z− using UKF, 
this method is so called Unscented Particle Filter (UPF). This estimation strategy is investigated in our research by the 
motivation from the fact that: The UKF is able to accurately propagate the mean and covariance of the Gaussian 
approximation to the state distribution. And the big overlap between distribution by UKF and the true posterior 
distribution, this make the UKF an optimal candidate for more accurate proposal distribution generation within the 
particle filter framework (Van der Merwe, 2000). By this algorithm, it can apply on any non-linear functions without 
Taylor series expansion and it may cope with any behaviors of noises without assuming Gaussian noise.  

 
3. INS/GPS INTEGRATION 

 
Two types of INS/GPS integration schemes, LC and TC are implemented in this research, their architectures are 

illustratively described in the Figure 1 and Figure 2, respectively. In general principle, the output from IMU including 
accelerometers and gyroscopes and the INS mechanization serve as the system dynamic model for a Bayesian-based 
estimation. Measurements and their basic equations from GPS help to build measurement model for the estimation 
tool. The data from INS and GPS is combined and processed by an estimation tool for the final solution which is 
much more accurate than solutions of either system in stand-alone mode. The difference between LC and TC is from 
aid measurements. In the LC scheme, the aid measurements are the final solutions of GPS such as positions and 
velocities. In TC scheme, the aid measurements are GPS raw measurements such as pseudo-ranges, Doppler signals 
or carrier phases. 

 

                  

Figure 1. Loosely Coupled INS/GPS integration architectures 
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Figure 2. Tightly coupled INS/GPS integration architectures 

4. EXPERIMENT 
 
For the INS/GPS integration field test, a land-based mobile mapping van with mapping sensors mounted were 

employed (Figure 3). A tactical grade IMUs, SPAN-CPT and a dual-frequency GPS receiver, OEM-V were used as 
the reference sensors. The reference trajectory was processed based on the raw measurement of SPAN-CPT by 
commercial IMU/GPS processing software, Inertial Explore 8.10. The test IMU data is a low cost IMU, 
C-MIGITSTM III with raw GPS measurement collected by embedded receiver of SPAN-CPT. The test software is 
written on Matlab. The position and attitude errors were computed by the difference between the results from test 
IMU and the reference. The field test was implemented in Tainan city where the open area and urban canyon are 
included along trajectory (Figure 4).  

The Figure 5, Figure 6 show the samples of comparison in positions and orientations error and Table 1 illustrate 
the position Root Mean Square Error (RMSE) of EKF, UKF, and UPF applied on LC scheme. 

               
       Figure 3. The experiment platform                                   Figure 4. Field test trajectory 

 
         Figure 5. Samples of position errors on LC                Figure 6. Samples of orientation errors on LC         
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Table 1. Position root mean square errors and execution time on LC 

 

Applied method RMSE(m) Execution time(s) 

EKF 7.44 271.41 

UKF 6.69 3038.12 

UPF 6.49 5769.15 

 
Based on the results provided, it can be seen that in the LC scheme, the performance of UKF and UPF are 

comparable and better than EKF, the improvement in position accuracy is about 12%. However, the execution time of 
UKF and UPF are much longer than that of EKF. In EKF, the execution time is about 30% of operation time, while 
the time consuming in UKF and UPF are about 300% and 600% of operation time, respectively.  

 
For the TC scheme, EKF and UPF are applied in the experiment, the estimation results are then analyzed by the 

comparison with the results estimated by LC scheme. The Figure 7, Figure 8 and Table 2 illustrate the performance. 
 

 
      Figure 7. Samples of position errors on TC             Figure 8. Samples of orientation errors on TC 

 

Table 2. Position root mean square errors and execution time on TC 

 

Applied method RMSE(m) Execution time(s) 

EKF-LC 8.04 291.23 

EKF-TC 4.98 293.51 

UKF-LC 6.92 3038.17 

UKF-TC 3.98 3278.92 

 
The results indicate that the improvement of TC scheme compared to LC scheme is significant. With EKF, the 

improvement in position accuracy is about 14% and in UKF, the improvement is about 20%. In overall, the 
improvement of the best solution, UKF-TC over the conventional solution, EKF-LC is about 50%. In addition, it can 
be seen from the figures that in comparison to LC, the estimation results of TC converge faster. 

 
 

 



5. CONCLUSIONS 
 
The analyzed results show that in general, the performance of non-linear, non-Gaussian estimation including 

UKF and UPF are better than that of EKF in which linearization and assuming Gaussian noise is utilized. However, 
the long processing time is the disadvantage of these strategies. In term of position RMSE, UKF and UPF are 
comparable, however, in considering processing time, UKF is the better solution. 

Generally speaking, the non-linearity of system and measurement models is at moderate level and the noise is 
almost Gaussian in INS/GPS integration. From these characteristics, choosing appropriate estimation algorithms for 
certain applications could be proposed as following: For real time navigation applications, EKF is still an optimal 
strategy but for post-processing mapping application, UKF or UPF are recommended. 
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