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ABSTRACT: Digital elevation model (DEM) is one of the most basic and important information for a range of 
spatial applications on the earth. DEM falls into digital terrain model (DTM) and digital surface model (DSM) 
based on whether they include the height of surface objects or not. For some of the applications such as hydrology, 
geomorphology, and studies on the gravity field, global-scale DTM is necessary in particular. There are various 
types of existing DEMs, but we do not have any global DTMs that are useful in terms of data openness, reliability, 
spatial uniformity, resolution, and accuracy. Although ASTER GDEM is of high quality, it is also not useful for a 
kind of applications because it describes the upper surface of the landscape. Therefore, to create global DTM is a 
very significant challenge. With a background like that, we set our goal of generating global DTM from ASTER 
GDEM. We assumed that the spatial frequency characteristics of DTM and that of curves from surface features 
differ from each other. Based on this assumption, ASTER GDEM was decomposed into hierarchical wavelet 
components, and then DTM was regressed on them. As a result of regression, standard deviations for some of 
estimated coefficients were relatively large. This means that these coefficients are controlled by other elements. 
Therefore, we carried out regression considering land cover that is thought to affect the frequency characteristics of 
DEM and DTM. 
 
1.   INTRODUCTION 
 
1.1 Digital Elevation Model	
 
 
Digital elevation model (DEM) is one of the most primary and important geospatial information that contributes to 
all kinds of scientific fields for public’s benefit. Major application fields are hydrological simulation, 
meteorological simulation, biomass estimation, urban stock volume estimation, topographic cartography, gravity 
field modeling, and topographic correction for remote sensing data. Group on Earth Observations (GEO) regards 
DEM as basic information required for all the nine social benefit areas in 10-year implementation plan (Muller, 
2008). 
 
Many application fields of DEM deal with global-scale phenomena. Even if the subject matter itself is on just 
one-religion scale or smaller, it is valuable that the same manner can be applied in any other regions around the 
world for comparison or accumulation of information. To do this, fundamental data used in the process should be 
on the same quality globally. Therefore, to be developed uniformly on the global scale is one of the most important 
specifications required for DEM. 
 
DEM falls into digital terrain model (DTM) and digital surface model (DSM) based on whether they include the 
height of surface objects or not. For some of the applications such as hydrology, geomorphology, and studies on the 
gravity field, global-scale DTM is necessary in particular. 
 
In this study, we use the term “DTM” as the ground elevation data, “DSM” as the surface elevation data, and 
“DEM” as the general term for “DTM” and “DSM”.	
 
 
1.2 Existing DEMs and Their Problems	
 
 
There are various kinds of existing DEMs. Representative ones are GTOPO30, SRTM3, ASTER GDEM, and 
original DEMs developed by each country. GTOPO30, DTM completed by U.S. Geological Survey’s EROS Data 
Center in 1996, covers all of the earth surface and is open for public, but it has problems with data source reliability, 
spatial uniformity, and data freshness (Une, 2008). SRTM3 and ASTER GDEM are superior at data openness, 



reliability, spatial uniformity, data freshness, resolution, and coverage, but they are not useful for a kind of 
applications because they include the height of buildings and vegetation. Furthermore, original DEMs of each 
country are not useful because of the openness and coverage.	
 So it is said that we do not have any useful global 
DTMs. Therefore, to create global DTM is a very significant challenge.  
 

Table 1 Existing DEMs 
 GTOPO30 SRTM3 ASTER GDEM Original DEMs 

Openness Good Good Good Bad 
Reliability Bad Good Good Excellent 
Uniformity Bad Good Good Excellent 
Freshness Bad Good Excellent Good 
Resolution Bad Good Excellent Excellent 
Coverage Excellent Good Excellent Bad 

DTM/DSM DTM DSM DSM DTM 
 
1.3 Concept of This Study	
 
 
The problem of SRTM3 and ASTER GDEM is only that they are not DTM but DSM. Between these two DEMs, 
ASTER GDEM is better than SRTM3 in terms of data freshness, resolution, and coverage. So we aimed to extract 
DTM from ASTER GDEM. One of the differences between DTM and DSM is the spatial frequency characteristics. 
Curves of ground elevation are formed by internal and external geomorphic agent, so it is relatively gentle. On the 
other hand, curves of the surface of objects on the ground are relatively radical because the height of buildings and 
vegetation changes with every short distance.	
 
 
Wavelet transform is useful for analyzing the spatial frequency characteristics of images because it decomposes an 
image with the axis of spatial frequency and spatial location while Fourier transform does not have the axis of 
spatial location. DSM image is decomposed into images with each frequency level, but we have no knowledge that 
explains that to which frequency the surface objects height affects. This problem is solved by regression analysis 
with DTM as dependent variable and wavelet components of DSM as independent variables. Furthermore, land 
cover type is possible to affect the frequency characteristics of DSM. So the accuracy is expected to improve by 
carrying out regression analysis with every land cover type. 
  
1.4 Objective	
 
	
 
The final goal of our study is generating global DTM from ASTER GDEM. For this purpose, in this study we 
examine the utility of wavelet analysis, regression analysis, and land cover map in DTM extraction from ASTER 
GDEM. 
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Fig 1 Overview of this study	
 
	
 



2.   METHODOLOGY 
	
 
2.1 Data Used in This Study 
 
2.1.1 ASTER GDEM: ASTER GDEM is a free global DEM which was released in 2009 by Ministry of Economy, 
Trade and Industry (METI) in Japan and the National Aeronautics and Space Administration (NASA) in United 
States. Elevation data is derived by photogrammetry using two directions images from ASTER sensor on Terra. 
Spatial resolution of ASTER GDEM is 1 arc-second (approx. 30m) and elevation accuracy is 10.87 m (standard 
deviation to NED). Terra is still on the orbit and continuing taking photos, so data update and accuracy 
improvement is available (ASTER GDEM Validation Team, 2009).	
 
	
 
2.1.2 GSI DTM: For reference DTM, we used a DTM developed by Geographical Survey Institute (GSI) in Japan, 
which covers some parts of Japan. GSI generated it by photogrrammetry using aerial photos and objects filtering, 
therefore it is regarded as a DTM. Resolution is 5 m and accuracy of elevation is better than 0.7 m (standard 
deviation to ground survey). Spatial resolution is fitted to that of ASTER GDEM by bilinear resampling. 	
 
 
2.1.3 Land Cover Map: So far, we do not have global land cover map with 1 arc-second resolution. So in this 
study 30 arc-seconds global land cover map from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
was used. One pixel of MODIS land cover map was divided into 30x30 pixels. 
 
2.2 Wavelet Transform 
 
Wavelet transform is one of the frequency analysis techniques. Although it seems like Fourier transform, they differ 
from each other in temporal analysis. While Fourier transform only focuses on frequency, wavelet transform 
analyses both frequency and time (Nakano et al., 1999). Time for signal is space for DEM profile. So, spatially 
localized wave can be separated from DEM profile by wavelet transform. 
 
One-dimensional discrete wavelet transform separates one signal into two signals. 
 

(1) 
 
sj is called “wavelet smooth level j” and dj is “wavelet detail level j”. s0 is the original signal; in case of this study, 
it is one-dimensional profile of ASTER GDEM. d1 and s1 are high- and low-frequency component of s0, 
respectively.  
 
The same calculation can be applied to s1. 
 

(2) 
 
From equation (1) and (2), 
 

 
 
If the original signal length is 2J, the same operation can repeats J times. After that, s0 is expressed as below. 
 

s0 = d1 + d2 + d3 + · · · + dJ + sJ =
J�

j=1

dj + sJ

 
 
Calculation of wavelet transform is just a convolution of wavelet filter and wavelet coefficients. For the filter 
function, we chose Daubechies’ one (N=2) for simplicity. 
 
For more detailed about calculation above, see (Nakano et al., 1999). We followed the method that is introduced in 
this book. 
 
In two-dimensions, one image is decomposed into four images. At first, one-dimensional wavelet transform is 
carried out to each row of the original image. So the original image is decomposed into two images (name “A” and 
“B”, temporary). And then, one-dimensional wavelet transform is carried out again to each column of image A. So 
image A is decomposed into two images. The same for image B. After that, we get four images. 
 

s0 = d1 + s1

s1 = d2 + s2

s0 = d1 + d2 + s2



LL0 = HH1 + HL1 + LH1 + LL1 
 
LL0 is the original ASTER GDEM image. Here, “L” and “H” means low- and high-frequency, respectively. So, for 
example, HLj is a level j image with high-frequency rows and low-frequency columns. After the same processes of 
the case of one-dimension, the original image can be expressed as below. 
 

LL0 =
J�

j=1

( HHj + HLj + LHj ) + LLJ

 
 
2.3 Regression Analysis	
 
 
In this study, we regarded it as the problem of estimating the beta of equation below (in one-dimension, for 
simplicity). So for example, if the surface objects height in ASTER GDEM image affects only the d1 component, 
beta 1 must be equal to zero and others are one.	
 
 

 
 
 

(3) 
 
 
 
The index 1, 2, … , N inside parentheses represents position in a profile signal. In case of image, N is equal to the 
product of x size and y size of the image. 
 
For estimate the beta of equation (3), the ordinary least squares (OLS) estimation was carried out. Equation (3) is 
simply written as 
 

(4) 
 
The OLS estimator for linear regression model (4) is 
 

(5) 
 
The OLS predictor for DTM is calculated as 
 

(6) 
 
2.4 Regression with Land Cover Map 
 
The frequency characteristics of DEM and DTM are changes if the land cover condition at that location changed. 
So the vector beta in equation (3) takes different values on different land cover type. Therefore, we separated the 
original ASTER GDEM image into images of each land cover type and calculated (5) and (6) for each image. 
 
3.   APPLICATION AND RESULTS 
 
3.1 Application  
 
Regression analysis was carried out on a test area in Saitama, Japan (Fig 2 - 6). Regression considering land cover 
was also done and the results were compared. 
 
Two-dimensional discrete wavelet transform was applied to 1024x512 image at first. This image was decomposed 
up to level 6. 
 Because of the feature of calculation method, some pixels on the edge of the image are sacrificed. Values of 
victim pixels are not available, so they should not be used for regression. The image size without sacrifice is 
770x258. 
 
Land cover types that are included in the area were mixed forests, evergreen needleleaf forest, urban and built-up, 
and woody savannas. For simplicity, we summed up mixed forests, evergreen needleleaf forest, and woody 
savannas into one land cover type, and then DTM was regressed at each of forest area and urban built-up area. 





DTM(1)
DTM(2)

...
DTM(N)




=





1 d1(1) d2(1) · · · dJ(1) sJ(1)
1 d1(2) d2(2) · · · dJ(2) sJ(2)
...

. . .
...

1 d1(N) d2(N) · · · dJ(N) sJ(N)









β0

β1

β2
...

βJ

βJ+1





+





ε(1)
ε(2)

...
ε(N)





y = Xβ + ε
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Fig 2 Test area (inside the white square) 
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Fig 3 ASTER GDEM 
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Fig 5 ASTER GDEM minus GSI DTM 
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Fig 4 GSI DTM 
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Fig 6 Land cover map

 
3.2 Results  
 
Figure 7 and 8 shows residuals of estimated DTM images. Table 2 shoes RMSEs of to GSI DTM. 
 

 

~ -30 30 m ~0  
Fig 7 OLS predictor without LC minus GSI DTM 

 

~ -30 30 m ~0  
Fig 8 OLS predictor with LC minus GSI DTM

 
Table 2 RMSEs to GSI DTM 

 RMSE to GSI DTM (m) 
ASTER GDEM 10.85 

OLS predictor without land cover 9.69 
OLS predictor with land cover 9.65 

	
 
As the result of OLS estimation without land cover, Student’s t-value for the coefficient value of beta 
corresponding to HH1 component took 0.71, with null hypothesis of “coefficient is equal to zero” (table 3). This 



means HH1 images of ASTER GDEM and GSI DTM have no correlation with each other. Of course, the same for 
OLS estimation with land cover type.	
 
 
From comparison between figure 5 and figure 7, we can find that global errors of ASTER GDEM were removed by 
applying wavelet and regression analysis. Especially, the accuracy was improved in the urban area; right side of the 
image. However, in forest area, it is difficult to see visible accuracy improvement. As a result, RMSE of OLS 
predictor without considering land cover to GSI DTM is 1.2 m less than that of original ASTER GDEM image. 
 
Table 2 and a comparison of figure 7 and 8 show us that the estimation accuracy did not improved by considering 
land cover type. It means that land cover type doesn’t affect the spatial frequency characteristics of ASTER GDEM, 
or other kinds of factors affects. Slope is one of the candidates for this unknown element. In the forest area of figure 
7 and 8, we can see defined influence of terrain. So some information about terrain such as slope or aspect need to 
be considered. Additionally, the problem of spatial resolution of land cover map is to be solved. The roughness of 
land cover map is possible to derive bad result in this analysis.  
 

Table 3 Result of regression 
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
3.3 Future Works  
 
At first, we need to examine the result of regression, especially the coefficient values, and compare each frequency 
components. Then, the reason why estimation with land cover did not work well should be discussed. Alternate 
available land cover map is necessary. About wavelet transform, other wavelet base functions are worth trying and 
comparing, because different combination of input signal waveform and base function makes different results. 
Finally, in this research we applied OLS estimation, which ignores the covariance of elevation. Actually the 
elevation values of two points close to each other have some correlation, so the accuracy is expected to be improve 
by introducing kriging, which is a estimation and prediction considering the covariance.  
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 OLS with land cover 
 OLS without land cover Forest Urban and built-up 
 coef. stdev. t-value coef. stdev. t-value coef. stdev. t-value 

const. 7.27 0.0431 168.93 6.15 0.1278 48.09 5.61 0.0522 107.37 
HH1 0.10 0.1483 0.71 0.17 0.2712 0.63 0.04 0.1231 0.29 
HL1 1.60 0.0503 31.77 1.75 0.0727 24.08 0.94 0.0674 13.93 
LH1 1.45 0.0301 48.11 1.51 0.0422 35.75 1.07 0.0468 22.75 
HH2 2.18 0.0758 28.78 2.45 0.1109 22.09 1.17 0.0970 12.02 
HL2 1.65 0.0153 107.92 1.69 0.0214 79.10 1.38 0.0242 56.85 
LH2 1.36 0.0090 150.67 1.38 0.0125 110.62 1.18 0.0154 76.69 
HH3 1.70 0.0130 130.23 1.73 0.0181 95.48 1.46 0.0215 67.86 
HL3 1.36 0.0055 247.54 1.37 0.0076 180.30 1.26 0.0093 135.82 
LH3 1.16 0.0033 351.98 1.17 0.0045 259.18 1.06 0.0061 173.30 
HH4 1.19 0.0046 259.83 1.19 0.0063 190.29 1.16 0.0086 134.27 
HL4 1.10 0.0030 373.10 1.12 0.0041 271.72 1.02 0.0050 205.50 
LH4 1.02 0.0019 543.73 1.03 0.0026 394.69 0.99 0.0033 304.52 
HH5 1.02 0.0028 364.57 1.03 0.0038 267.79 0.98 0.0053 185.05 
HL5 1.00 0.0019 529.98 0.99 0.0026 389.08 1.02 0.0038 270.50 
LH5 0.97 0.0011 881.08 0.96 0.0015 634.04 0.99 0.0019 527.47 
HH6 0.98 0.0021 462.90 0.98 0.0029 337.14 0.97 0.0038 255.60 
HL6 0.95 0.0019 508.13 0.95 0.0025 374.36 0.97 0.0040 240.78 
LH6 0.96 0.0010 944.00 0.96 0.0015 658.12 0.97 0.0014 678.26 
LL6 0.97 0.0002 4851.36 0.97 0.0004 2190.46 0.98 0.0005 2106.06 


