
ASSESSING GARP MODELING AND EFFECT OF PLANT SAMPLE POSITION ON 

PREDICTING SUITABLE HABITAT OF Brainea insignis 

Wen-Chiao Wang
a
, Nan-Jang Lo

b, Wei-I Chang
c, and Kai-Yi Huang

*d 

a
Graduate student, Dept. of Forestry, Chung-Hsing Univ., Taiwan E-mail: chiao87219@yahoo.com.tw 

b
Specialist, EPMO, Chung-Hsing Univ., Taiwan E-mail: njl@dragon.nchu.edu.tw 

c
Director, Hsinchu forest district office, Forest Bureau, Hsinchu 300, Taiwan E-mail: weii@forest.gov.tw 

d*
Professor, same as with author-a E-mail: kyhuang@dragon.nchu.edu.tw (corresponding author) 

250 Kuo-Kuang Road, Taichung, Taiwan 402, Tel: +886-4-22854663; Fax: +886-4-22854663 

 

KEY WORDS: Cycad-fern, Decision Tree (DT), Genetic Algorithm for Rule-set Prediction (GARP), Discriminant 

Analysis (DA), Geographic Information System (GIS), Remote Sensing (RS). 

 

ABSTRACT: Forestry has begun to use 3S technologies (RS, GIS, and GPS) in routine inventory work and 

scientific research.  Modeling ecological pattern of species needs to utilize the combination of 3S technologies and 

statistics, and it has become an important part in ecology.  The study was intended to predict the suitable habitat of 

cycad-fern in the Huisun Forest Station by using multivariate statistics coupled with a GIS.  The ecological pattern 

of the species was examined by overlaying the layer of cycad-fern samples collected with GPS on the layers of 

topographic variables and vegetation index derived from SPOT-5 images.  We also combined easting and northing 

coordinates of grid cell with topographic variables to improve the accuracy of predictive models.  Three models, 

decision tree (DT), Genetic Algorithm for Rule-set Prediction (GARP), and discriminant analysis (DA), were 

developed and validated.  Accuracy assessment results indicated that the accuracies of DT with easting and 

northing added respectively were much greater than those of both GARP and DA with easting and northing added 

respectively, and GARP with easting and northing added respectively was also better than DA.  More importantly, 

the accuracies of DT with easting and northing added respectively were greatly improved, those of DA with easting 

and/or northing added respectively were slightly improved, and the opposite was true with GARP.  Easting was 

more effective than northing in improving model accuracy because of east-west distribution with cycad-ferns in the 

Kuan-Dau watershed of the Huisun area.  However, easting and northing predictor variables were found to limit 

the ability of spatial extrapolation with models and make predictive results look more artificial.  We shall attempt 

to incorporate predictor variables extracted from high spatial resolution, hyperspectral data into models to improve 

the ability of spatial extrapolation with models in a follow-up study. 

1. INTRODUCTION 

With computer technology and 3S technologies (remote sensing, geographic information system, and global 

positioning system) rapid advancement, forestry has begun to use these useful tools in routine inventory work and 

scientific research.  Modeling spatial distribution of species needs to utilize the combination of these tools, and it 

has become popular in the field of ecology (Guisan and Thuiller, 2005).  Applications in forest have included 

gaining the species of unknown distributional areas and undiscovered species, predicting species invasions, finding 

disease and supporting conservation planning (Bourg et al., 2005; Pearson et al., 2007; Asner et al., 2008; Lelong 

et. al., 2010). 

Modeling species distribution allows us to understand the spatial distribution of species, and also identify the 

relationship between the species and environment.  Indirect factors of environment variables (e.g. elevation, slope, 

aspect) are most easily measured in the field and are often used because of their good correlation with observed 

species patterns (Guisan and Zimmermann, 2000).  Nowadays a variety of multivariate statistical methods have 

been used to model ecological niches and predict the geographical distributions of species, such as generalized 

additive models (GAM), genetic algorithm for rule-set prediction (GARP), discriminant analysis (DA), decision 

tree (DT) (Lowell, 1991; Guisan et. al., 2002; Bourg et al., 2005; Lisa et al., 2008; Ke et al., 2010). 

In our study, we used three modeling techniques: GARP, DT and DA.  We chose cycad-ferns as our target species, 

because they are a rare species and have limited distribution in Taiwan.  The objective of the study was to predict 

the potential habitat of the species in the Huisun Forest Station in central Taiwan.  Elevation, slope, aspect, terrain 

position, and vegetation indices derived from SPOT-5 images were accounted for in vegetation habitat evaluation 

and unknown site search.  We also combined easting and northing coordinates of grid cell with topographic 

variables to improve the accuracy of predictive models and want to know the effect of position on predictive 

accuracy.  The study developed the models that related known plant sites to habitat characteristics and 

extrapolated the plant’s potential sites in the study area.  The study evaluated these models in terms of accuracy 

and implementation efficiency and determined the optimum for predicting the habitat of cycad-ferns. 



2. STUDY AREA 

The Huisun Forest Station is in central Taiwan (Figure1), situated within 24◦2´–24◦5´ N latitude and 

121
◦
3´–121

◦
7´ E longitude.  This station is the property of Chung-Hsing University, and has a total area of 7, 477 

ha.  The study area ranges in elevation from 454 m to 3, 419 m, and its climate is temperate and humid.  Hence, 

the study area has nourished many different plant species and is a representative forest in central Taiwan.  This 

study using samples from Sihwufongshan, Duhchuanling and Kuandaushan in Huisun, Sihwufongshan elevation 

from 680 m to 840 m, the highest elevation of Duhchuanling approximately 810 m, and Kuandaushan elevation 

approximately 760 m.  According to the climate record of this study area, the annual mean warm is 21.0 ; the ℃
monthly mean warm highest is 30.6℃ in July, lowest is 20.5℃in January; mean annual precipitation 2453.5 mm, 

the average relative moisture is 85%. 

Cycad-fern, Blechnaceae family, is only found in mountains in central Taiwan, such as Huisun Experimental 

Forest Station and Tong-Mao Mountain areas, and Huisun is the main area of growth.  Because of its narrow 

distribution of limited ecological range, cycad-fern has been categorized as one of the rare species (Lu et al, 1986). 

There were 202 cycad-fern samples collected from Sihwufongshan, Duhchuanling and Kuandaushan by GPS in 

this study, but a part of these samples remained after data integration because some cycad-ferns fall within the same 

pixels with others, respectively.  The two-thirds of the dataset, 123 samples, were used for model development 

(training) and the remaining, one-third of the dataset, 59 samples were used for model validation (test). 

 

Figure1. Location map of study area. 

3. MATERIALS AND METHODS 

3.1 Data Collection 

Digital elevation model (DEM) with grid size 5 × 5 m, orthophoto base maps (1:10,000), and nine-date SPOT 

images were collected.  In situ data (cycad-fern samples) were also acquired by using a GPS linked with a laser 

range.  Two-date SPOT images (07/10/2004 and 11/11/2005) were chosen because the two-date images have the 

best quality with the least amount of clouds among the nine-date SPOT images. 

3.2 Data Processing 

Slope, aspect, easting and northing data layers were generated from 5 × 5 m DEM.  The ridges and valleys in 

the study area were used together with DEM to generate terrain position layer.  The main ridges and valleys over 

the study area were directly interpreted from the contour lines shown on the orthophoto base maps; these lines were 

then digitized to establish the data layer of main ridges and valleys by using ARC/INFO software for later use.  

The data layer of main ridges and valleys in a vector format was converted into a new data layer in a raster format 

by ERDAS Imagine software, and then combined with DEM to generate terrain position layer (Skidmore, 1990).  

Vegetation indices were derived from the two-date SPOT-5 images, one in autumn, the other in summer, by using 

Spatial Modeler of ERDAS Imagine.  Cycad-fern samples obtained by GPS were converted into ArcView 

shapefile format for later use. 

3.3 Database Building 

The GIS database used in the study was constructed by using ERDAS Imagine software module Layer Stack to 

overlay elevation, slope, aspect, terrain position, vegetation index, easting, and northing layers.  The cycad-fern 

sample layer was overlaid with seven data layers, and those pixels of the seven layers lying at the same position 

with the cycad-fern pixels clipped out.  To build statistical models, the sample data for both target groups 

(cycad-fern) and non-target groups (background) were taken from data layers by the random sampling to minimize 

spatial autocorrelation in the independent variables (Pereira and Itami, 1991).  Because non-target sites 

(background) correspond to the vast majority of the study area, larger variation is expected in environmental 

characteristics for this group.  The number of non-target pixels (sites) should be three times more than that of 

target pixels to increase the probability of acquiring a more representative sample of the habitat characteristics at 

non-target sites (Pereira and Itami, 1991; Sperduto and Congalton, 1996). 



3.4 Model Development 

The predictive models for selecting potential habitat of the trees were created using three statistical methods: (1) 

genetic algorithm for rule-set prediction, (2) decision trees, and (3) discriminant analysis.  Model development and 

validation can be done by cross-validation (it is called split-sample validation).  Split-sample validation can be 

implemented by dividing a dataset into two subsets, the first one (training data) typically comprising one-half to 

two-thirds of all data and the other (test data) comprising one-third to one-half of all data.  The first one is used to 

build and test a model.  The other one (an independent dataset) is just used to test the model, not used to build the 

model.  Three models were implemented by using SPSS software package in this study. 

3.4.1 Genetic Algorithm for Rule-set Prediction 

Genetic algorithm for rule-set prediction has recently seen extensive use only in present studies.  It seeks a 

collection of rules that together produce a binary prediction (Phillips et al., 2006).  GARP uses a set of point 

position records of species presence and a set of environmental layers that might limit the species' capabilities to 

survive.  The model will use genetic algorithm to search heuristically for a good rule-set.  There are four rules 

available currently in GARP software (DesktopGARP): atomic, logistic regression, bioclimatic envelope, and 

negated bioclimatic envelope rules, it uses the rules to search the correlation between species presence and absence 

and environmental variables for predicting suitable conditions for each pixel (Stockwell and Noble, 1992).  GARP 

software is freely available on the worldwide web (http://www.nhm.ku.edu/desktopgarp/Download.html), named 

“DesktopGARP.”  It repeats times of statistical calculation based on runs set by user, and each of runs would 

generate a predictive distribution map.  Part or all of maps generated from DesktopGARP would be overlaid, and 

then the integrative map could be generated according to the times of that each pixel was predicted as target.  The 

preconditions of rules in GARP are simple conjunctive expressions: 

V1=v1&V2>v2&…&Vm=(vm1,vm2)                 (1) 

where v1,v2,...,vm are values of the variables V1,V2,…VM.  The variables 1 to m are a subset of the total number of 

variables, i.e. they are not repeated.  The precondition selects a subset of data set. The conclusion is an assignment 

of a classification value to the selected subset. 

3.4.2 Decision Tree 

Decision trees are a sequential partitioning of the dataset in order to maximize differences on a dependent 

variable.  Decision pathways originate from a starting node (root) that contains all observations and end at 

multiple nodes containing unique subsets of observations.  Terminal nodes are assigned a final outcome based on 

group membership of the majority of observations (De’ath and Fabricius, 2000; Bourg et al., 2005; O’Brien et al., 

2005).  CART (Classification and Regression Trees) was used and it was implemented by using SPSS software 

package in this study.  In theory there are several functions, but Gini splitting rule is most broadly used rule.  If 

that the data set S contains n classes, Gini is defined as: 

             ( ) ∑
=

−=
n

j

jpSGini
1

21                            (2) 

where Pj is the probability of  j class in S dataset. 

3.4.3 Discriminant Analysis 

Discriminant analysis is a technique, which discriminates among k classes (objects) based on a set of 

independent or predictor variables.  The objectives of DA are to (1) find linear composites of n independent 

variables which maximize among-groups to within-groups variability; (2) test if the group centroids of the k 

dependent classes are different; (3) determine which of the n independent variables contribute significantly to class 

discrimination; and (4) assign unclassified or “new” observations to one of k classes (Lowell, 1991). DA was 

implemented by using SPSS software package in the study.  The variates for a discriminant analysis, also known 

as the discriminant function takes the following form: 

Y j k = α + β1X1 k + β2 X 2 k + . . . + βn X n k            (3) 

where 

Y j k = discriminant Y score of discriminant function j for object (class) k 

α = intercept 

βi = discriminant weight for independent variable i 

X i k = independent variable i object (class) k 

3.5 Model Validation 

Model validation can be done by split-sample validation, as mentioned previously.  For each model, predict the 

response of the remaining data, and calculate the error from the predictions and the observed values (De’ath and 

Fabricius, 2000). We also used overall accuracy and kappa coefficient to assess models, because overall accuracy 



only include the data along the major diagonal and excludes the errors of omission and commission, kappa 

incorporates the non-diagonal elements of the error matrix as a product of the row and column marginal (Lillesand 

et al., 2008). 

4. RESULTS AND DISCUSSION 

As compared the statistics of five predictor variables for the entire study area and cycad-fern sites, it was found 

that cycad-ferns had preference for elevation ranging from 728 to 916 m; slope was less than 69°, the mean slope 

was about 32°.  The mean terrain position was 6, median was 7, and this indicates that the area may receive 

enough sunlight for cycad-fern growth. 

Table 1 shows the accuracies of three predictive models with different combinations of predictor variables for 

predicting the potential habitat of cycad-ferns.  By comparing the accuracies of the C1 and C3, vegetation index 

was found not able to improve the model performance significantly.  This is because the spectral resolution and 

spatial resolution of SPOT imagery are not enough to discriminate cycad-fern from other plants.  The same results 

were found with comparison between C1 and C2; that is, aspect variable could not improve the model performance 

significantly.  Furthermore, we used elevation, slope and terrain position as our base models of predictor variables, 

and added easting and northing to know how they affected model prediction (table 2).  After adding easting and 

northing, overall and kappa also increased, in DT model kappa increased by 0.13 (from 0.84 to 0.97) and GARP 

kappa increased by 0.069 (0.87 to 0.94), DA model kappa increased by 0.01 (from 0.62 to 0.63).  Easting was 

more effective than northing in improving model accuracy because of east-west distribution with cycad-ferns in the 

Kuan-Dau watershed of the Huisun area.  However, since the positions of predictive habitat were clustered around 

field locations, this gave rise to the possibility of exaggerating validation statistics. 

Table 1 Accuracies of three predictive models with different combinations of predictor variables for predicting the 

potential habitat of cycad-ferns. 

GARP DT DA 
Class 

C1 C2 C3 C1 C2 C3 C1 C2 C3 

Non-habitat (%) 95 94 94 99 98 98 84 83 85 

Habitat (%) 99 89 96 92 94 94 98 98 97 

Overall (%) 95 93 95 98 97 97 86 86 87 
Training 

Kappa  .87 .79 .85 .92 .92 .90 .68 .67 .79 

Non-habitat (%) 90 91 91 96 96 96 81 81 80 

Habitat (%) 98 92 97 93 93 93 98 98 98 

Overall (%) 91 91 92 96 95 95 84 83 82 
Test 

Kappa  .77 .75 .79 .84 .82 .84 .62 .61 .76 

C1: Elevation, Slope, TP; C2: Elevation, Slope, Aspect, TP; C3: Elevation, Slope, TP, Vegetation Index; TP: Terrain Position 

Table 2 Accuracies of three predictive models with added easting and northing for predicting the potential habitat 

of cycad-ferns. 

GARP DT DA 
Class 

C4 C5 C6 C4 C5 C6 C4 C5 C6 

Overall (%) 98 99 93 99 99 99 87 87 87 
Training 

Kappa (%) .94 .97 .82 .98 .96 .98 .67 .66 .68 

Overall (%) 96 97 90 99 98 98 85 86 85 
Test 

Kappa (%) .87 .92 .73 .97 .94 .93 .63 .65 .61 

C4: Elevation, Slope, TP, easting, northing; C5: Elevation, Slope, TP, easting; C6: Elevation, Slope, TP, northing; TP: Terrain Position 

Table 3 Distribution statistics of predictive maps generated from two models with three variable cases (elevation, 

slope, and terrain position). 

GARP DT 
Class 

Area (ha) % Area (ha) % 

Habitat 998 5.8 248 1.4 

Non-Habitat 16138 94.2 16,888 98.6 

Sum 17136 100.0 17136 100.0 

We also used elevation, slope and terrain position to predict cycad-fern’s potential habitat.  Because kappa and 



overall accuracy of DT and GARP model were much higher than those of DA, we just show the potential habitat of 

GARP and DT models for a comparison purpose.  DT greatly reduced the area of potential habitat to less than 2% 

of the entire study area.  GARP also reduced the area of potential habitat of 6% of the entire study area (table 3).  

After adding easting and northing of predictor variables, GARP reduced the area of potential habitat to less than 3%, 

and added easting had more influence than did added northing.  DT had the same results as GARP (table 4 and 5).  

However, added easting and northing could limit the potential habitat to a small range around the positions of field 

samples (figure 2); it would become a limiting factor at a large scale.  Thus, it would need more samples to predict 

the potential habitat at a large scale when easting and northing of predictor variables are used. 

Table 4 Distribution statistics of predictive maps generated from GARP model with added easting and northing of 

predictor variables. 

C4 C5 C6 
Class 

Area (ha) % Area (ha) % Area (ha) % 

Habitat 537 3.1 273 1.6 1,534 9.0 

Non-Habitat 16,599 96.9 16,863 98.4 15,602 91.0 

Sum 17136 100.0 17136 100.0 17136 100.0 

C4: Elevation, Slope, TP, easting, northing; C5: Elevation, Slope, TP, easting; C6: Elevation, Slope, TP, northing; TP: Terrain Position 

Table 5 Distribution statistics of predictive maps generated from DT model with added easting and northing of 

predictor variables. 

C4 C5 C6 
Class 

Area (ha) % Area (ha) % Area (ha) % 

Habitat 107 0.6 204 1.2 252 1.5 

Non-Habitat 17029 99.4 16932 98.8 16884 98.5 

Sum 17136 100.0 17136 100.0 17136 100.0 

C4: elevation, slope, TP, easting, northing; C5: elevation, slope, TP, easting; C6: elevation, slope, TP, northing; TP: terrain position 

(a)                                (b)                               (c) 

 

(d)                                (e)                               (f) 

 

Fig. 2 Two models for mapping the potential habitat of cycad-ferns in the study area with added easting and 

northing of predictor variables. (a) GARP-C4, (b) GARP-C5 ,(c) GARP-C6; (d) DT-C4, (e) DT-C5, (f) 

DT-C6 (C4: elevation, slope, TP, easting, northing;  C5: elevation, slope, TP, easting;  C6: elevation, slope, 

TP, northing; TP: terrain position) 

5. CONCLUSIONS 

The study developed the three models of DT, GARP and DA that related known tree sites to habitat 

characteristics and extrapolated the plant’s potential sites in the study area.  The accuracy of the DT model was 



higher than those of the GARP and DA.  Accuracy assessment results indicated that the accuracies of DT with 

easting and northing added respectively were much greater than those of both GARP and DA with easting and 

northing added respectively, and GARP with easting and northing added respectively was also better than DA.  

More importantly, the accuracies of DT with easting and northing added respectively were greatly improved, those 

of DA with easting and northing added respectively were slightly improved, and the opposite was true with GARP.  

Easting was more effective than northing in improving model accuracy because of east-west distribution with 

cycad-ferns in the Kuan-Dau watershed of the Huisun area.  However, easting and northing predictor variables 

were found to limit the ability of spatial extrapolation with models and make predictive results look more artificial.  

We shall attempt to incorporate predictor variables extracted from high spatial resolution, hyperspectral data into 

models to improve the ability of spatial extrapolation with models in a follow-up study. 

The results show that the vegetation indices derived from SPOT-5 satellite images could not improve model 

accuracy for widely distributed tree species due to the limitations of spectral resolution and spatial resolution with 

SPOT-5 imagery.  Airborne hyperspectral data and LIDAR data will be used in a follow-up study so that the 

model accuracy can be improved.  Also we shall add more data samples taken from Tong-Mao Mountain about 10 

km from the Huisun study area to test model accuracy and reliability. 
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