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ABSTRACT: This paper describes a combined remote sensing-GIS-logistic regression approach of merging 

extracted information from Landsat images with georeferenced biophysical and socio-economic datasets in the 

detection and analysis of the driving forces of forest cover change in Agusan del Norte (ADN) in Mindanao Island, 

Philippines, a province where forest resource use have been historically extensive. Year 1976 Landsat 2 MSS and 

year 2001 Landsat ETM+ images were independently classified using Support Vector Machines (SVM) to produce 

land cover maps with overall classification accuracies of 95% and 98%, respectively. Changes in forest cover and 

other types of land-cover change in the 25-year period were then detected from these maps through post-classification 

comparison in a GIS. To investigate what has driven these conversions, the associations between these changes and a 

selection of biophysical and socio-economical variables were explored through logistic regression analysis. The 

results show that while both the biophysical and socio-economical variables were significantly associated with the 

occurrences of forest cover change, the models containing only the socio-economical variables predict better the 

occurrences of change than those containing only the biophysical variables. This implies that most of the forest cover 

change detected in the year 2001 in ADN is much more a socio-economical matter, and is less forced by biophysical 

limitations. With these results, this study demonstrated the usefulness of RS, GIS and statistical analysis as 

exploratory tools in understanding the underlying processes and identification of driving forces of forest cover 

change, especially in areas of extensive forest resource use. 

 

1.  INTRODUCTION 

 

Understanding the underlying processes and identification of the driving forces of land-cover change presently 

remains to be a very active area of research. Forest cover change, in particular, has constantly attracted interests 

among a wide variety of researchers perhaps due to the fact that identification of factors contributing to forest cover 

change is a first step in controlling forest loss (Grainger, 1993) and is necessary in comprehensive forest management 

planning and formulation of appropriate forest use policy (Apan and Peterson, 1996).  

 

Remote Sensing (RS) and Geographic Information System (GIS) and statistical analysis techniques have contributed 

significantly in studying the dynamics of land-cover change (Liu et al., 1993; Apan and Peterson, 1996; Coppin et al., 

2004; Hung and Wu, 2005; Millington et al., 2007).  Imageries from satellite RS platforms provide valuable sources 

of multi-temporal land-cover information especially in areas which are difficult to monitor and could be very 

expensive when using conventional techniques. With GIS, land-cover change could be quantified and visualized to 

generate primary data on the location, type, and rate of change and, in turn, provide a basis for analyzing the impacts 

of these changes not only on socio-economic processes but also on such environmental processes as energy flux, 

runoff, erosion, air and water quality, and biodiversity. With statistical analysis, the detected changes could be 

examined further to describe the association of various biophysical and socio-economical factors that may have 

caused the changes. 

 

In northeastern Mindanao, Philippines, the province of Agusan del Norte (ADN) (Figure 1) is widely known for its 

rich forest resource and one of the major timber producers in the whole country since the 1950s up to the present. In 

fact, the province belongs to the so-called “Eastern Mindanao Corridor” where 75 percent of the country’s timber 

extraction comes from (CEPF 2005). The province has utilized its forest resources extensively resulting from the 

establishment of logging and timber industries way back in the 1950s (Paler et al., 1998)  that continue to operate until 

this time by way of forest license agreements issued by the Philippine government to private corporations and 

non-government organizations. These industries have contributed greatly to the economy of the province and to the 

Philippines as a whole; however, they are often blamed for decades of rampant upland forest destruction and 
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Figure 1. Map of Agusan del Norte, a province located on the northeastern 

part of Mindanao Island, Philippines. 

significant changes in land-cover whose ecological aftermath continues to unfold in the valleys below. In fact, 

logging in the primary watersheds of ADN between the 1950s and 1990s has resulted in massive upland erosion and 

lowland siltation, combined with rapid runoff and flooding (SASFMN, 1993). Recently, the same environmental 

impacts of deforestation and land-cover change are still a common problem that environmentalists, watershed 

planners, and policy makers face today in the ADN (ADB, 2004).  

 

While several studies have been conducted to detect and analyze land cover change in the Philippines (e.g. Kummer, 

1990; Liu et al., 1993; Apan and Peterson, 1996; Verburg et al., 2006), none have been done so far in a forest resource 

rich province like ADN. The lack of reliable statistics on land cover change, especially forest cover change, has 

limited the integration of such knowledge into land use and conservation planning in ADN. Moreover, while the 

logging industries may have direct connection to deforestation and other types of land-cover changes in ADN, the 

contributions of other equally relevant factors associated with deforestation such as agricultural expansion, wood 

extraction, expansion of infrastructure, population growth, and bio-physical environment, among many others (Geist 

and Lambin, 2002) maybe overlooked. Hence, there arises a necessity to ascertain what were the factors associated 

with deforestation in this province.  

 

The objective of this study is to detect and analyze forest cover change in ADN. Through a combined remote 

sensing-GIS-statistical approach, land cover information detected from Landsat images will be merged with 

georeferenced biophysical and socio-economic datasets to statistically analyze the driving forces of forest cover 

change in ADN. 

 

 

2.  THE STUDY AREA 

 

ADN has a total land area of 

2,590.52 sq. km. where 26% of it is 

classified as alienable and 

disposable while 74% are classified 

as forestlands [81]. The province is 

consists of 10 municipalities and 

two cities (Butuan and 

Cabadbaran). From 1975 to 2000, 

population of ADN has increased 

to 250,768 (or 83%). Climate in the 

province is moderate, having no 

definite dry season. Due to the vast 

forest resource of  ADN, several 

privately owned companies and 

community-based organizations 

applied and were awarded with 

different forest licenses in ADN 

from the years 1959-2001. These 

include Timber License Agreement (TLA), Integrated Forest Management Agreement (IFMA), Community-Based 

Forest Management Agreement (CBFMA), and Community-Based Resource Management (CBRM). About 77% of 

the forestlands of ADN were under TLAs specifically in the years 1959-1989 which indicated a very intensive forest 

resource extraction in the province during this period. Records of the Department of Environment and Natural 

Resources-Forest Management Bureau (DENR-FMB) showed that the log production of ADN reached its peaked 

from the years 1984 to 1992. After year 1992, the log production of Agusan del Norte was observed to decline rapidly. 

This may be due to the implementation of the total log ban in the year 1992. 

  

3.  METHODS 

 

3.1 Landsat Image Analysis and Land-cover Classification 

 

Landsat 2 MSS image acquired on April 17, 1976 covering the study area was downloaded from the University of 

Maryland - Global Land Cover Facility (GLCF) website (http://glcf.umiacs.umd.edu), while Landsat 7 ETM+ image 

acquired on May 22, 2001 was obtained from the U.S. Geological Survey 

(http://edcsns17.cr.usgs.gov/EarthExplorer/). These 8-bit images, with pixel resolutions of 57 and 30 meters, 

respectively, were already orthorectified. Prior to image classification, the images were subjected to radiometric 



calibration, atmospheric correction using dark object subtraction, and geometric assessment to determine if they are 

co-registered. The details of the image pre-processing are discussed in Santillan et al. (2011). Cloud and 

cloud-shadows were also removed from the images using a cloud and shadow masking algorithm (Makinano et al., 

2010) to eliminate the error and confusion that they may introduce to the extraction of land-cover information during 

the image classification process.  These steps as well as subsequent image analyses were done using Environment for 

Visualizing Images (ENVI) Version 4.4. 
 

The pre-processed and cloud-and-shadow free Landsat images (as well as other by-products such as NDVI) were 

subjected to supervised classification to derive the 1976 and 2001 land-cover (LC) maps. Eight (8) land-cover classes 

namely, Forest, Rangeland, Built-up, Palm Trees, Cropland, Bare Soil, Exposed Rocks and Water, were identified 

from the images through visual interpretation using existing LC  maps of the DENR, topographic maps and Google 

Earth images as references. Representative samples of each class were collected from the images for supervised 

image classification and accuracy assessment. The classification algorithms included traditional classifiers such as 

Minimum Distance, Mahalanobis Distance and Maximum Likelihood and the recently developed Support Vector 

Machines (SVM) classifier. SVM was implemented as a non-linear classifier using the Radial Basis Functions (RBF) 

kernel available in the ENVI 4.4 image analysis software. For both the 1976 and 2001 image dataset, each classifier 

was implemented using various combinations of input bands. The use of 4 classifiers and various combinations of 

image bands and by-products was done to generate several classified images and selecting from these outputs the best 

classified image in terms of classification accuracy. A digital elevation model (DEM) from the Shuttle Radar 

Topography Mission (SRTM) was also included as additional band during image classification.  

 

3.2 Land-cover Change Detection 

 

The two LC maps derived were then subjected to post-classification comparison change detection analysis (Coppin et 

al., 2004) using Arcview GIS 3.2 to examine the location, extent and distribution of land-cover change in the study 

area. The 2001 land-cover map was first re-sampled to 57-m resolution using nearest neighbor method prior to change 

detection. Because of cloud and shadows present in the images used (“No Data” in the LC maps), only portions of the 

LC maps that both have data in 1976 and 2001 were subjected to change detection analysis. The 25-year land-cover 

change maps and statistics were then derived, which includes a general deforestation (DEFOR) map containing 

change and no-change in forest cover, and four (4) maps of major forest cover changes: forest to bare soil (FOR2BS), 

forest to cropland (FOR2CL), forest to palm trees (FOR2PT) and forest to rangeland (FOR2RL).  

 

3.3 Statistical Analysis of Forest Cover Change by Logistic Regression 

 

Binary logistic regression analysis was carried out to test the association of forest cover changes with biophysical and 

socio-economical variables. These descriptive (or independent) variables are listed in Table 1. The logistic regression 

approach implemented by Van Doorn and Bakker (2007) was adopted in the analysis to identify the contribution of 

individual descriptive variables as well as groups of descriptive variables (i.e. biophysical and socio-economical) to 

the description of forest cover change in general (DEFOR) and of the four investigated forest cover changes 

(FOR2BS, FOR2CL, FOR2PT and FOR2RL) in particular. The multivariate logistic regression equation used is of 

the form (Millington et al., 2007): 
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where π(x) is the probability that the dependent or response variable equals 1, α is a constant and β1, β2, …, βn are the 

regression coefficients of the predictor variables x1, x2, …, xn. Each of the regression coefficients describes the size of 

the contribution of that variable  to the outcome.  In this study, the modeled “outcome” is change in forest cover. The 

logistic regression coefficient, β was primarily used in explaining the relative influence of the variables  to the forest 

cover change in the area. A positive regression coefficient implies that the variable  increases the probability of forest 

cover change, while a negative regression coefficient indicates the variable  decreases the probability of forest cover 

change.  

 

To implement the logistic regression analysis, the forest cover change maps were converted into binary response 

variable maps with each pixel in the maps representing the presence/absence (1/0) of the change, whereby the zeroes 

are observations of forest cover that has not changed during the 25-year period. The proportions of change and 

no-change in forest cover were computed for each of the binary response variable maps. For each change type, five 

percent of the response variable with the lowest proportion (i.e. least abundant) were computed and served as the 

number of samples that will be selected from each change/no change class in the binary maps. This sampling size is 

large enough to satisfy the minimum number of samples required for logistic regression (Peduzzi et al., 1996). 



Finally, the samples that were randomly selected for the four forest cover change logistic regression datasets were 

merged to create a general DEFOR logistic regression dataset. This study utilized equal number of samples each for 

the change/no change response variables to avoid erroneous fit of the models which may occur when the ratio 1/0 

observations for the response variable is out of proportion, meaning an excess of 1’s compared to 0’s or the other way 

around (Van Doorn and Bakker, 2007).  

 

Table 1. Biophysical and socio-economical variables used for the logistic regression analysis. 

Type Variables Description Source 

Biophysical 

ELEV 
Elevation in meters above mean sea 

level; continuous variable. 

Shuttle Radar Topography Mission Digital Elevation Model 

(SRTM DEM), calibrated with spot heights from topographic 

maps. 

SLOPE 
Slope, in percent; continuous 

variable. 
Computed from the SRTM DEM 

SOILQUAL 

Soil type ranked according to 

increasing quality for agricultural use; 

Categorical variable: 1=low, 

2=medium, 3=high. 

Soil Type Map published by the Bureau of Soils and Water 

Management of the Philippine’s Department of Agriculture. 

DISTRIV 
Distance to rivers and streams, in 

meters; continuous variable. 

Distance grid computed from rivers and streams digitized 

from topographic maps. 

Socio- 

economical 

DISTROAD 
Distance to roads, in meters; 

continuous variable. 

Distance grid computed from road network digitized from 

topographic maps and from the 2001 Landsat images. 

POPDEN 

Population density; number of 

persons per square km; continuous 

variable. 

National Statistics Office, Year 2000 Census 

LAND_LOG 

Lands subjected to logging activities; 

categorical variable: 0 = outside 

logging area; 1 = inside logging area 

Maps of TLA, IFMA, CBFMA and CBRMA; Source of 

maps: Forest Management Bureau, Department of 

Environment and Natural Resources 

LAND_PROT 

Lands classified as protected area; 

categorical variable: 0 = outside  

protected  area; 1 = inside  protected  

area 

Maps of lands classified as protected areas under the National 

Integrated Protected Areas System (NIPAS) Act of 1992; 

Source of maps: Department of Environment and Natural 

Resources. 

DISTLOG 
Distance to logging areas, in meters; 

continuous variable. 
Distance grid computed using the LAND_LOG map. 

 

The values of the biophysical and socio-economical variables were computed for each sampling point. Tests for 

collinearity of the descriptive variables using Pearson correlation coefficient (R2), Tolerance Statistics and Variance 

Index Factor (VIF) were made to ensure that descriptive variables are not correlated with each other. Goodness-of-fit 

of the logistic regression models is evaluated by the chi-square (χ2) test, applied to the difference in the (-2Log) 

maximum likelihood of a model with descriptive variables to a model with less or no descriptive variables (Van 

Doorn and Bakker, 2007). The χ2 test was applied to identify the relative importance of the biophysical and 

socio-economical variables. For this purpose, three models for every forest cover change were tested and the 

goodness of fit was evaluated: 1) a full model including all the biophysical and socio-economical variables, 2) a 

model with biophysical variables only, and 3) a model with socio-economical variables only. The χ2 values of the 

three models were then compared to assess the descriptive powers of the biophysical and socio-economical variables. 

The greater the χ2 value the stronger the forest cover change is associated with the set of descriptive variables. When 

the sum of χ2 values of models 2 and 3 is higher than the χ2 of the full model, it can be concluded that there exist an 

overlap between the descriptive powers of the two groups of variables. It is not possible to assign the descriptive 

power to one of the groups (Bakker et al., 2005; Van Doorn and Bakker, 2007).  

 

4.   RESULTS AND DISCUSSION 

 

4.1 Forest Cover Change in ADN 

 

The land-cover maps of ADN for 1976 and 2001, showing areas with data common to both year (i.e., cloud and 

shadow covered areas in 1976 and 2001 were excluded), are depicted in Figure 2. These land-cover maps have overall 

classification accuracies of 94.99% and 98.25% for 1976 and 2001, respectively. The 1976 land-cover map was the 

result of SVM-RBF classification of band combinations of Landsat MSS surface reflectance bands (Bands 4, 5 6 and 

7), NDVI and DEM. This result was the highest among 32 classifications that utilized 6 various combinations of 



inputs bands subjected to four classifications 

algorithms. On the other hand, the 2001 

land-cover map was the result of SVM-RBF 

classification of Landsat ETM+ surface 

reflectance & temperature bands (Bands 1-7) 

and DEM; this has the highest classification 

accuracy among 8 classifications that utilized 2 

various combinations of inputs bands subjected 

to 4 classification algorithms. 

 

Changes in land-cover of Agusan del Norte 

from 1976-2001 is very evident in the areas 

surrounding Butuan City. This is where drastic 

increases in built-up, cropland and water (e.g., 

expansion of fishpond) areas can be found. 

Yet, the most pronounced change in land-cover 

is that of forest and rangeland. Quantitative 

assessments through change detection using 

the land cover change map (93.33% accurate) 

show significant decrease in forest cover by 

32% (or about 255.30 sq. km.) while rangeland 

areas increased by 92% (about 327.86 sq. km.) 

during the 25-year period. Forest to rangeland 

is the major land-cover change in Agusan del 

Norte from 1976 to 2001. Although 

deforestation due to increase in rangeland is 

significantly evident, “re-forestation” of 

rangeland areas from 1976 to 2001 was also 

present. The total re-forested area was 

approximately 101 sq. km.   It was also 

observed that large tract of lands planted with 

palm trees in 1976 have been converted into 

croplands in 2001. 

 

Examining the specific changes in the 1976 

forest cover showed a decrease in forest area 

due to their conversion to rangeland (34%), 

palm trees (8%), cropland (2%) and bare soil (2%).  Conversions to built-up, water and exposed rocks amounted to 

less than 1% of the 1976 forest cover. It can be deduced from the computed land-cover change statistics that forest 

cover in Agusan del Norte have been drastically reduced by conversion to rangeland. This may have been due to 

unsustainable logging activities, where, after the trees have been harvested, the logged-over areas were left behind 

without replanting that made it suitable for grasses to grow. The overall forest cover change in ADN was significant, 

with only about 54% of its initial forest cover in 1976 remaining. The forest cover change statistics further showed 

that conversion to rangeland, palm trees, bare soil and cropland are among the four major contributors to forest cover 

reduction in this  province. 

 

4.2 Logistic Regression Analysis of Forest Cover Change: Major Results 

 

Table 2 and Figure 3 summarize the results of the logistic regression analysis of forest cover change in ADN. The 

analysis showed the relative importance of the biophysical and socio-economical variables to the occurrence of forest 

cover change in ADN. 

 

Looking into the general scenario of forest cover change (DEFOR), the results of the χ2 analysis revealed that forest 

cover change in ADN is governed by both biophysical and socio-economical variables. However, the model χ2 values 

suggest that socio-economical variables better describe the occurrence of forest cover change than the biophysical 

variables because of the former’s greater χ2. There is an overlap between the two sets of variables and it is difficult to 

associate the changes among the two. The DEFOR model regression coefficients indicate the negative contributions 

of variables ELEV, SLOPE, SOILQUAL, DISTROAD and LAND_PROT to the occurrence of forest cover change. 

This means that increasing the values of these variables will also decrease the occurrence of forest cover change. 
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Figure 2. The 1976-2001 land-cover maps of ADN. Areas with 
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2044.67sq.km.) of ADN. 
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from 1976-2001 for cloud-free areas only. 



Positive coefficients where obtained for the remaining variables DISTRIV, POPDEN, LAND_LOG and DISTLOG.  

This clearly indicates that forest lands in ADN with lower elevation, lesser slope, lesser soil quality, nearer to roads 

and not located within protected areas were the most prone to forest cover change. The probability of forest cover 

change is further increased if it is far from rivers and logging areas, and located within an area with higher population 

density. It can be stated that while the variables SOILQUAL, LAND_LOG, and LAND_PROT are significant in 

explaining the forest cover change process, their contributions is very minimal because of their near zero coefficient 

values. The positive coefficient values for DISTRIV and DISTLOG is quite contrary to what is expected. The general 

understanding is that a forestland is more prone to be deforested if it is nearer to rivers and logging areas. However, 

the results of the logistic regression analysis showed otherwise. A plausible explanation for this maybe the historical 

deforestation that had occurred during the 1950s to the 1970s in ADN, most especially in the upland watersheds 

(SASFMN, 1993). During this period, forestlands near rivers and logging areas may have been drastically harvested 

and very little were left to regenerate. As a consequence, forestlands from 1970s onwards can no longer be found near 

rivers or in logging areas but rather in areas far from these variables. 

 

Table 2. Results of logistic regression analysis of forest cover change in ADN. 

A. Model Chi-square (χ2)Values 

Type of Model DEFOR FOR2BS FOR2CL FOR2PT FOR2RL 

     Biophysical + Socio-economical (Full) 2,753 255 531 1,718 1,370 

     Biophysical Variables Only 1,424 183 290 929 736 

     Socio-economical Variables Only 1,863 130 382 1,058 863 

B. Logistic Regression Model Coefficients 

Variables DEFOR FOR2BS FOR2CL FOR2PT FOR2RL 

Bio-physical 

ELEV -3.219 -5.160 -81.773 -41.201 -1.620 

SLOPE -1.619 -2.740 7.666 2.392 -1.397 

SOILQUAL -0.310 -0.983 1.305 1.259 -0.489 

DISTRIV 4.94 8.119 10.303 5.148 4.896 

Socio- 

economical 

DISTROAD -1.345 -0.203 -4.209 -1.745 -1.345 

POPDEN 2.497 3.889 6.624 4.731 2.107 

LAND_LOG 0.544 0.296 2.881 2.268 0.428 

LAND_PROT -0.517 -1.774 0.753 0.155 -0.628 

DISTLOG 2.839 3.083 14.006 11.252 1.211 

 

In the FOR2BS analysis, the results showed that forest to bare soil conversion is more directed by the set of 

biophysical variables. The probability of this conversion is greater on highly elevated areas with steep slopes and with 

a soil that has low qualities for agriculture. This suggests that the biophysical constraints of these areas are that strong 

that it is unfavorable for other conversions to happen.  

 

The results of the regression analyses of FOR2CL and FOR2PT show the greater influence of socio-economical 

variables than the biophysical ones. In FOR2CL and FOR2PT, the positive model regression coefficients of 

POPDEN, LAND_LOG and DISTLOG and the negative coefficient of DISTROAD are very indicative of their relative 

influence to the conversions of forests to cropland and palm trees: forestlands nearer to roads but far from logging 

areas and with higher population density are the more prone to these conversions. The positive coefficients of 

biophysical variables SOILQUAL is also expected as these kinds of conversions occur in forestlands of better soil 

quality, especially for soils suitable for cultivation. The influence of elevation is consistent as expected, with highly 

elevated areas less prone to the conversions. However, the contribution of SLOPE is not clear. The positive 

coefficient of SLOPE seems to suggest that a certain criteria for slope must be met for the conversions to cropland and 

palm trees to occur. Further study is necessary to better understand this finding.  

 

The result of the regression analysis of FOR2RL is similar to that of FOR2BS. The only difference is that the 

conversion of forest to rangeland is more driven by socio-economic variables. From the regression coefficients, it is 

evident that more accessible forestlands (e.g. very near roads, low elevation, not sloping, and not within protected 

areas) were the ones prone to be converted to rangeland. Soil quality also plays a significant role, with forestlands 

with lesser soil quality more prone to the conversion. 



 
Figure 3. Visualization of the contribution and overlap to forest cover change of the biophysical and socio-economical 

variables based on the chi-square values. (Visualization adopted from Van Doorn and Bakker, 2007.) 

 

 

SUMMARY AND CONCLUSIONS 

 

This paper describes a combined remote sensing-GIS-logistic regression approach of merging extracted information 

from Landsat images with georeferenced biophysical and socio-economic datasets in the detection and analysis of the 

driving forces of forest cover change in Agusan del Norte (ADN) in Mindanao Island, Philippines, a province where 

forest resource use have been historically extensive. The Landsat image analysis and classification using SVM-RBF 

generated highly accurate land-cover maps that were then subjected to change detection and statistical analysis. The 

most significant land-cover change in ADN was found to be the conversion of forest to rangeland. By merging the 

forest cover change information with georeferenced biophysical and socio-economical datasets, an explanatory 

picture of the forest cover change process in ADN was obtained. The results of the χ2 analysis of the various logistic 

regression models show that while both the biophysical and socio-economical variables were significantly associated 

with the occurrences of forest cover change, the models containing only the socio-economical variables predict better 

the occurrences of change than those containing only the biophysical variables. This implies that most of the forest 

cover change detected in the year 2001 in ADN is much more a socio-economical matter, and is less forced by 

biophysical limitations. Although the range of biophysical and socio-economical variables was limited, the study was 

able to identify some important factors in the forest cover change process. Similar to an earlier study by Van Doorn 

and Bakker (2007), the statistical analysis employed in this study has been shown to be suitable for describing forest 

cover change using a variety of different types of data, and thus is considered to be useful in research that aims to 

integrate spatially explicit biophysical and socio-economic data. Overall, this study demonstrated the usefulness of 

RS, GIS and statistical analysis as exploratory tools in understanding the underlying processes and identification of 

driving forces of forest cover change, especially in areas of extensive forest resource use 
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