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ABSTRACT: This paper presents a technique to detect oil spills in ENVISAT Advanced Synthetic Aperture Radar 

(ASAR) images using radar backscatter thresholding and logistic regression analysis. We developed and tested this 

technique using 4 Envisat ASAR images that were acquired many days after the  M/T Solar I oil spill incident 

occurred on August 11, 2006 in Panay Gulf, southwest of Guimaras Island in Visayas, Philippines. A semi-automated 

approach by histogram analysis and radar backscatter thresholding was implemented to detect and segment dark 

formations in the Envisat ASAR images. Then, a logistic regression (LR)-based dark formation classifier was 

developed using 4 shape features, 11 contrast features, 2 homogeneity, and 2 slick surrounding features of the 

detected dark formations consisting of 154 verified oil slicks and 1,355 look-alikes. From this, a dataset consisting of 

77 confirmed oil slicks and 77 look-alikes were randomly selected and used to train the classifier while the remaining 

dataset of 77 oil slicks and 1,272 look-alikes were used for validation. Features of the training dataset were fitted in a 

binary LR model and a backward stepwise-likelihood ratio approach was utilized to determine the sets of features that 

best discriminate an oil slick from its look-alike. Cross-validation of the LR classifier using the training dataset 

showed 84% accuracy for oil slick classification, 87% accuracy for look-alike classification, and an overall 

classification accuracy of 86%. An independent validation of the LR classifier revealed an above average 

performance, with 92% accuracy for oil slick classification, 76% accuracy for look-alike classification, and overall 

classification accuracy of 77%. The results of this study indicate that the combined radar backscatter thresholding and 

logistic regression analysis could be a promising approach in oil spill detection in Envisat ASAR images. The 

simplicity of the technique and its use of information readily available from the SAR images are advantageous in the 

rapid mapping of oil slicks right after an oil spill incident. Its improvement through consideration of prevailing wind 

conditions, the use of large training and validation datasets as well as inclusion of other relevant image features 

during classifier development could be a subject of future studies.  
 

1.  INTRODUCTION 

 

1.1 Background and motivations 

 

Images acquired by spaceborne Synthetic Aperture Radar (SAR) sensors have been extensively used for the detection 

of oil spills in the marine environment (Brekke and Solberg, 2005a; Topouzelis, 2008). Oil spill detection from SAR 

images relies on the fact that oil film decreases the backscattering of the sea surface resulting in dark formation that 

contrasts with the brightness of the surrounding spill-free sea. In a recent review by Topouzelis (2008), several 

semiautomatic and fully automatic methodologies have been developed for oil spill detection in SAR images. 

However, they are not very popular for oil spill detection as they are complex, they can not be easily reproduced and 

require specific knowledge on image understanding, pattern recognition and classifications theories.  

 

In the vast literature of oil spill detection from SAR images, the logistic regression (LR) approach has not been used 

yet as a dark formation classifier though many statistical-based approaches have been reported (Topouzelis, 2008). 

LR’s potential as a binary classifier have been maximized in medical imaging applications (Ayer et al., 2010; 

Dreiseitl and Ohno-Machado, 2002) such as in classifying pigmented skin lesions (Dreiseitl et al., 2001), in 

computer-aided detection and diagnosis of benign and malignant breast masses in ultrasound images (Song et al., 

2005) and prediction of malignant breast lesions on dynamic contrast-enhanced magnetic resonance images 

(McLaren et al., 2009). In these applications, LR is used to examine the relationship between a binary outcome 

(dependent) variable such as presence or absence of disease and predictor (explanatory or independent) variables such 

as image features and/or patient demographics.  In Dreiseitl et al. (2001), the discriminatory power of LR and other 



Figure 1. Map showing the location of the August 11, 2006 MT-Solar 1 

oil spill incident near Guimaras Island, Visayas, Philippines. 

machine learning algorithms such as k-nearest neighbor, artificial neural network (ANN), decision trees and support 

vector machines were analyzed on the task of classifying images of pigmented skin lesions. The algorithms were 

trained and tested on a dataset of morphometric features of pigmented skin lesions extracted from the images that 

were categorized into global (shape, color, normalized color, border features) and local (segment, quantized color, 

ratio) features. Of the five methods investigated, excellent classification results were obtained for logistic regression, 

with its performance almost identical to those of artificial neural networks and support vector machines. In Song et al. 

(2005), ultrasound images of 24 malignant and 30 benign masses were analyzed quantitatively for margin sharpness, 

margin echogenicity, and angular variation in margin. These features and age of patients were used with two pattern 

classifiers, LR and ANN, to differentiate between malignant and benign masses. The performance of two methods 

was compared by Receiver Operating Characteristics (ROC) analysis. Results of this study showed that there was no 

difference in performance between LR and the ANN as measured by the area under the ROC curve. However, logistic 

regression analysis is more advantageous because it provides a deterministic model for the data and yields weighting 

factors for each contributing feature. The LR classifier was also less complex to develop and faster to train than ANN. 

In McLaren et al. (2009), a logistic regression-based computer aided diagnosis system was trained to automatically 

analyze breast lesion features detected from magnetic resonance images in order to differentiate between malignant 

and benign lesions. For the selection of the best predictors of malignant lesions, the LR-classifier utilized eight 

morphologic parameters, 10 gray-level co-occurrence matrix texture features, and 14 Laws texture features that were 

obtained using automated lesion segmentation and quantitative feature extraction. 

 

It is clear from the literatures cited above that although medical imaging is an entirely different field from SAR 

remote sensing, the principle, approach and procedures in object detection and classification from the images are just 

the same. The only difference, however, is the type of image being analyzed and the object to detect and classify. 

Moreover, medical applications of LR approach as a classifier are based on inherent image features of objects as 

indicators of whether it belongs to a certain class or otherwise. In oil spill detection, specifically in dark formation 

classification, the use of object features as input to a classifier is of similar importance. In this context, the LR 

approach can be an effective classifier of oil spills and look-alikes.  

 

1.2 Objectives 

 

The goal of this paper is to present an 

uncomplicated approach in dark 

formation detection and oil spill 

classification from Envisat Advanced 

SAR images through radar backscatter 

thresholding and application of logistic 

regression analysis. The technique is 

envisioned to be an alternative to 

existing statistically-based oil spill 

detection and classification 

approaches. 

 

2.  METHODS 

 

The oil spill detection technique to be 

presented in this paper follows the 

three steps generally employed in 

SAR-based oil spill detection (Topouzelis, 2008): (i.) detection and isolation of all dark formations in the image, (ii.) 

extraction of statistical parameters of the dark formations (“features”) that are related to the geometry of the 

formation, physical behavior, and their context on the image, and (iii.) classification of the dark formations to oil 

spills or look-alikes. We developed and tested this technique using Envisat Advanced Synthetic Aperture Radar 

(ASAR) images of the August 11, 2006 MT-Solar 1 oil spill incident that occurred in Panay Gulf, southwest of 

Guimaras Island in Visayas, Philippines (Figure 1). This oil spill event is considered to be the worst oil-related 

environment disaster the Philippines has experienced.  

 

2.1 Envisat ASAR Images of the August 11, 2006 MT-Solar 1 Oil Spill 

 

Four (4) Level 1P (slant- and ground-range corrected) Envisat ASAR images of the MT-Solar 1 oil spill were 

provided by the European Space Agency (ESA) through a Category 1 (Cat-1) project. These images were acquired in 



Wide Swath Mode (WSM) and provided by ESA as amplitude images with pixel width of 75 m. The dates and times 

of acquisition are as follows: (1) 24 August 2006, 1:44:41 UTC; (2) 25 August 2006, 13:53:16 UTC; (3) 28 August 

2006, 13:55:58 UTC; and (4) 06 September 2006, 1:36:09 UTC. Standard radar image pre-processing procedures 

using ESA’s Basic ENVISAT SAR Toolbox (BEST) version 4.2.2 software were applied to the Envisat ASAR 

amplitude images. This included radiometric calibration to generate a backscatter (β) image, and geometric correction 

to georeference the input ASAR images into the Universal Transverse Mercator Zone 51 projection with the World 

Geodetic System 1984 as datum. The images were then exported to Environment for Visualizing Images (ENVI) 

software version 4.3 for further analysis. Here, the images were “de-speckled” using a 3x3 Enhanced Lee filter. This 

removed the noisy pixels in the images while preserving texture information. Finally, land masses were masked out 

from the images using a vector database of island boundaries digitized from 1:50,000 topographic maps of the same 

area. 

 

2.2 Dark Formation Detection 

 

Dark spots/formations detection and segmentation from the pre-processed Envisat ASAR images were implemented 

in a semi-automated approach by histogram analysis and radar backscatter thresholding. The main goal is to detect all 

suspicious slicks and to preserve the slick shapes. The latter is of most importance for the success of discriminating oil 

spills from look-alikes (Brekke and Solberg, 2005a). To allow a consistent use of thresholding factor for dark 

formation detection, normalization was done in such a way that the minimum and maximum β values of sea surface in 

all the images are the same. The 24 August 2006 image was used as reference, and all the other three images were 

normalized to this image. After normalization, basic statistics of the sea surface β values in each image were 

computed (minimum, maximum, mean and standard deviation, σ). Histogram of β values were likewise plotted and 

analyzed. Image visualizations indicate that dark formations have the smallest β values, ranging from βmin to a certain 

threshold. The value of this threshold was obtained experimentally by using the βmean as a starting level. Several image 

thresholding factors that were used to detect dark spots/formations through “density slicing” in ENVI 4.3 included 

βmean, βmean – 0.5σ, βmean – 0.75σ, βmean – σ and βmean – 2σ. The best result (over 4 images) was found using the βmean – 

0.75σ threshold; hence, all pixels equal or below this value were considered as dark spot or part of a dark formation. 

The dark spots/formations detected were then subjected to segmentation to derive regions of connected pixels. ENVI 

4.3’s segmentation algorithm based on connectivity of a pixel was used. The algorithm works by analyzing each dark 

spot pixel and its neighbors. If a pixel is connected to a least 4 neighbors, then they will form a segment. The analysis 

was able to detect and isolate 1,509 dark formations from the 4 Envisat ASAR images (594 for August 24, 192 for 

August 25, 337 for August 28, and 386 for September 6). A manual analysis of the slicks was done prior to this to 

classify which of the slicks are oil spills and which ones are look-alikes. Oil spill maps published by UNOSAT (2006) 

and World Wildlife Fund-Philippines (Ligtas Guimaras, 2006), and field reports by the Silliman University Marine 

Laboratory (2006) were used as references in this manual classification. This resulted to 154 oil slicks and 1,355 

look-alikes. 

 

2.3 Feature Extraction 

 

The segmented dark spots/formations, hereafter referred to as "slicks", were then exported to vector format and 

further manipulated in Arcview GIS ver. 3.2 software. For each slick, a set of features were computed. These features 

were later used to classify each slick as either oil or look-alike. The feature set consists of a mix of features that have 

been used for oil spill detection as well as traditional descriptors from the image analysis literature (Brekke and 

Solberg, 2005b; Stathakis et al., 2006; Solberg et al., 2007; Topouzelis, 2008). These features (total of 17), grouped 

into descriptors for shape, contrast, slick homogeneity and slick surroundings are listed in Table 1. The dist2riv 

feature was included in this study as it was hypothesized that the high discharge rate from the rivers may have affected 

the movement of oil slicks, dispersing them away from the coastal areas where major rivers are located. This is also in 

consideration of the stormy weather conditions prevalent during the oil spill event that may have generated huge 

runoff volume being drained to the sea. The “larger window” surrounding the slick region that is used for computing 

background-related contrast features has no definite length and width (or diameter) and could be adaptive depending 

on the horizontal and vertical extent of a slick. In this study, a circular window is used, with its center at the midpoint 

of the line connecting the extreme points of the slick region and with diameter equal to the Euclidean distance 

between the two extreme points.  

 

Table 1. Features computed for all the detected candidate slicks.  

Feature Description 

Shape features (4)  

  a. Slick area, A The area of the slick region, in km2. 

  b. Slick perimeter, P Perimeter of the slick region, in km. 

  c. Slick complexity, C C = P2/A 



(continuation of Table 1)  

  d. Slick perimeter to area ratio P/A 

Contrast features (9)  

  a. Slick mean backscatter value, µslick Mean of slick backscatter values. 

  b. Slick standard deviation, σslick Standard deviation of slick backscatter values. 

  c. Slick minimum backscatter value, minslick Minimum of slick backscatter values. 

  d. Slick maximum backscatter value, maxslick Maximum of slick backscatter values. 

  e. Background mean backscatter value, µbkgrd Mean backscatter value of slick background within a larger 

window surrounding the slick. 

  f. Background standard deviation, σbkgrd Standard deviation of backscatter values of slick background 

within a larger window surrounding the slick. 

  g. Background minimum backscatter value, minbkgrd Minimum of backscatter values of slick background within a 

larger window surrounding the slick. 

 h. Background maximum backscatter value, maxbkgrd Maximum of backscatter values of slick background within a 

larger window surrounding the slick. 

  i. Slick local contrast, SLC The difference between the mean backscatter value of the 

slick and the mean backscatter value of slick background 

within a larger window surrounding the slick 

Homogeneity (2)  

  a. Slick power-to-mean ratio, PMRslick σslick /µslick 

  b. Background PMR, PMRbkdrg σbkgrd /µbkgrd 

Slick surroundings (2)  

  a. Distance to sunken vessel location, dist2ship The Euclidean distance of the center of the slick region to the 

sunken vessel location, in km. 

  b. Distance to mouth of rivers, dist2riv The Euclidean distance of the center of the slick region to the 

nearest mouth of rivers, in km. 

 

2.4 LR-based Classifier Development 

 

Theoretical Background of LR Analysis: Logistic regression (Hosmer and Lemeshow, 2000) is a simple and 

efficient supervised classification method that provides explicit probabilities of class membership and an easy 

interpretation of the regression coefficients of predictor variables. It is commonly used to analyze dichotomous 

outcomes (dependent variable) and is particularly appropriate for models involving decision-making. The 

dichotomous dependent variable is usually coded as 0 or 1 while the independent variables may be continuous, 

categorical, or a combination of the two, and does not require strong assumptions, like gaussianity of the predictor 

variables given the class or assumptions about the correlation structure (Bielza et al., 2011).  

 

The concept behind logistic regression as a classifier can be extended into the oil spill detection problem. In oil spill 

detection, a dichotomous outcome of interest is whether a dark formation detected in a SAR image is an oil spill or a 

lookalike: Y=1 if it is an oil spill or Y=0 if it is a lookalike. In the logistic model, the expected value of the response Y 

is equal to the probability that Y =1, that is, the probability that an event (such an oil spill) is present in the image. If 

X1, X2,…, Xn denote n predictor variables (e.g., shape, contrast, slick homogeneity and slick surroundings features), 

and p denotes the probability of oil spill presence in the image (i.e., the probability that Y = 1), the relationship 

between the predictor variables and p can be expressed as 
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, where B0 is a constant and B1, B2, …, Bn are the regression coefficients of the predictor 

variables X1, X2, …, Xn. Each regression coefficient, estimated from the available data, describes the size of the 

contribution of the corresponding predictor variable to the outcome. The probability of oil spill presence p can then be 

estimated with this equation. A common cut point for classifying cases is p=0.5; p values computed for each candidate 

slick that exceed the classification cutoff are classified as oil, while those with predicted values smaller than the cutoff 

are classified as lookalike.  

 
Developing the LR-based Oil Spill Classifier: The LR-based classifier was developed using the 4 shape features, 9 

contrast features, 2 homogeneity and 2 surrounding features of the detected slicks in the 4 Envisat ASAR images 

(Table 2). SPSS version 16 was used in training the logistic regression classifier, wherein features of 77 oil slicks and 

77 look-alikes (i.e., the training dataset randomly selected from the 4 images) were fitted in the LR equation. A 

balanced dataset of oil and lookalike was used in classifier training to avoid erroneous fit of the model, which is likely 



to happen when the ratio 0/1 observations for the response variable is out of proportion, meaning an excess of 0’s 

compared to 1’s or the other way around (Van Doorn and Bakker, 2007). A backward stepwise-likelihood ratio 

approach was used to determine the sets of features (Xi) with the largest significance in the classification model (i.e., 

the features that best discriminate an oil slick from its look-alike), their corresponding coefficients (Bi) and the model 

constant B0. A backward stepwise-likelihood ratio approach works by including all the predictor variables in the 

model and the variables are removed one by one as they are found to be insignificant in predicting the outcome (Ayer 

et al., 2010). Performing variable selection is a way to reduce a model’s complexity and consequently decrease the 

risk of overfitting (Dreiseitl and Ohno-Machado, 2002). The LR-based classifier was validated with the remaining 

dataset of 77 oil spills and 1,278 lookalikes. 

 

Table 2. Oil spill and lookalike datasets used for training and testing the LR-based classifier. The slicks for training 

and testing were selected using proportionate random sampling from each image. 

Envisat ASAR 

Image 

Total Number of Slicks Training Dataset Only Testing Dataset Only 

Lookalike Oil Lookalike Oil Lookalike Oil 

Aug. 24, 2006 567 27 14 14 553 13 

Aug. 25, 2006 156 36 18 18 138 18 

Aug. 28, 2006 291 46 23 23 268 23 

Sept. 06, 2006 341 45 22 22 319 23 

Total 1,355 154 77 77 1,278 77 

 

3.  RESULTS AND DISCUSSIONS 

 

3.1 The LR-based Oil Spill Classifier 

 

Equation (1) below summarizes the  LR-based oil spill classifier containing the significant features (Xi) that best 

discriminate an oil slick from its look-alike in Envisat ASAR images, their corresponding coefficients (Bi) and the 

model constant B0. Among the 17 features used, only 9 were found to be the most significant in classifying oil slicks 

and look-alikes. Three of these are contrast features such as slick background standard deviation (σbkgrd), slick 

background mean (µbkgrd), and slick mean (µslick). The rests are related to homogeneity (PMRbkdrg), slick shape (A, P) 

and slick surroundings (dist2ship, dist2riv). 

( 1)
1
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It can be observed from the Bi values that among the 9 significant features, PMRbkdrg and σbkgrd have the highest 

contribution in terms of increasing or decreasing the probability of a candidate slick being an oil spill. It is clear from 

the Bi values that slick background features are relevant features in oil spill classification. The positive regression 

coefficients of PMRbkdrg, µbkgrd, and P indicate that these features increases the probability of a candidate slick being 

classified as an oil spill. On the other hand, the probability of oil spill detection is decreased by σbkgrd, µslick, A, 

dist2ship and dist2riv.  The Bi values can be interpreted further when classifying two or more candidate slicks. 

According to the signs of the coefficients, it can be inferred that a slick with high values of PMRbkdr, µbkgrd and P but 

with small values of σbkgrd, µslick, A, dist2ship and dist2riv will have a probability of being an oil spill. The reverse of 
this would indicate that the slick could be a lookalike. The LR equation also implies that candidate slicks farther from 

the spill source and from rivers (high dist2ship and dist2riv values) have low probabilities of being oil spills. It is clear 

from the LR equation that although dist2ship, dist2riv, A and P are significant predictors of oil spill, their respective 

contribution is lower compared to σbkgrd, PMRbkdrg  ,µbkgrd, and µslick. The large and negative value of the equation 

constant (B0) could be an indicator that other features (apart from the 17 features) may have been omitted in this study, 

especially during classifier training. These features may be related to textural information such as slick border 

gradients, slick curvature, etc. (Solberg et al., 2007). Further studies are necessary to evaluate the contribution of the 
omitted features. 

 

3.2 Accuracy of the LR-based Oil Spill Classifier 

 

Table 3 shows the results of the LR-based classifier as applied to the training (cross-validation) and test (validation) 

datasets. In cross-validation, the LR classifier’s performance was satisfactory, correctly classifying 84% of the oil 

slicks (65 of 77), and 87% of the lookalikes (67 of 77). For this dataset, the overall classification accuracy was at 86%. 

In the independent validation using the test dataset, the LR classifier’s performance was found to be generally 

acceptable, with an overall classification accuracy of 77%. For this dataset, the oil spill classification was very high at 



92% (71 of 77) while lookalike classification was found reasonable at 76% (968 of 1278). It can be observed that the 

classifier is very good in classifying oil spills. However, it appears to perform low in classifying lookalikes, 

misclassifying 310 lookalikes as oil spills. Nevertheless, the classifier’s performance is promising in oil spill and 

lookalike classifications. 

 

Table 3. Confusion matrix showing the results of logistic regression classification as applied to the training and test 

datasets.  

Training Dataset 

(Cross-validation) 

Classification 
% 

Correct 

 Test 

Dataset 

(Validation) 

Classification 
% 

Correct Lookalike Oil Total  Lookalike Oil Total 

Sea-truth 

Lookalike 67 10 77 87  Lookalike 968 310 1,278 76 

Oil 12 65 77 84  Oil 6 71 77 92 

Total 79 75 132 86  Total 974 381 1,039 77 

 

To visualize the results of the classification, the LR-based classifier was applied to each of the 4 Envisat ASAR 

images. The classified images are shown in Figure 2 while the percentage accuracies are listed in Table 4. It can be 

observed that the LR-based classifier has satisfactory performance in classifying oil spills and lookalikes. For all the 

images, the overall classification accuracy is greater than 70%. However, the classifier has difficulty in correctly 

classifying the lookalikes. 

 

Table 4. Accuracies of the LR-based classifier as applied to the 4 Envisat ASAR images. 

Envisat ASAR Image 
Overall Classification 

Accuracy (%) 

Oil Spill Classification 

Accuracy (%) 

Lookalike Classification 

Accuracy (%) 

Aug. 24, 2006 78 67 78 

Aug. 25, 2006 72 94 67 

Aug. 28, 2006 74 98 71 

Sept. 06, 2006 83 87 83 

 

 

4.   CONCLUSIONS AND RECOMMENDATIONS 

 

In this paper, a technique to detect oil spills in Envisat ASAR images using radar backscatter thresholding and logistic 

regression analysis was presented. The technique consist of three major steps: (i.) dark formation detection through 

image normalization, histogram analysis and backscatter thresholding, (ii.) feature extraction, and (iii.) oil spill 

classification using LR analysis. The results of this study showed that the combined radar backscatter thresholding 

and LR-based classifier could be a promising approach in oil spill detection in Envisat ASAR images. An added value 

explored in this study is its findings on the relative contribution of image features in the detection and discrimination 

of oil spills from look alike. The analysis revealed that slick background features PMRbkdrg and σbkgrd have the highest 

contributions in increasing and decreasing, respectively, the probability of candidate slicks detected in the Envisat 

ASAR images as being oil spills. The simplicity of the technique and its use of information readily available from the 

SAR images are advantageous in the rapid mapping of oil slicks right after an oil spill incident. The LR-based 

classifier can also be of great value when doing historical mapping of oil spills such as finding where the oil spills 

have been (their relative movements through time and space), and the location of coastal areas affected. This is useful 

for studies that require information for the assessment of the damages of oil spills in the coastal environment. 

 

While the technique showed satisfactory results, its improvement through consideration of prevailing wind 

conditions, the use of large training and testing datasets as well as inclusion of other relevant image features during 

classifier development could be a subject of future studies.  It is emphasized here that the LR-based oil spill classifier 

was developed using oil slick and lookalike datasets that were pre-classified using secondary information from 

published oil spill maps. Confidence in the classification results can be enhanced if the classifier is to be developed 

and tested on a SAR dataset of oil spills and lookalikes that were actually verified through site inspection. Testing the 

classifier in an image without oil spills as well as comparing its performance with other classifiers are also worth 

doing as these could help further determine the accuracy of the classifier. 
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