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ABSTRACT: Coral reefs prefer to reside in warm, clean, clear waters with high oxygen content. Any deterioration of 

their environment would affect the life of coral reefs. Therefore, coral reefs serve as an important indicator of the 

environmental condition. Kenting National Park enjoys the most abundant coral reefs around Taiwan. However, 

recent extreme weather events, such as Typhoon Morakot in 2009, destroyed 50% of coral reefs in this area. The 

technique of water color remote sensing is promising in assessing the status of coral reefs at both high spatial and high 

temporal resolutions. However, to retrieve the water quality and the properties of benthic coral reefs directly from the 

water color signal requires a robust algorithm that has been validated against comprehensive in situ data and model 

simulations. In this research, we improve upon a genetic algorithm/semi-analytical model by taking into account the 

properties of benthic coral reefs, classifying the bottom into six different types; coral reefs, sand, sea grass, and green, 

red, and brown algae. A spectral library of bottom reflectance is established from in situ data measured in Kenting 

National Park and data simulated by the HydroLight radiative transfer model. Our new model, Genetic Algorithm and 

Shallow water Semi-Analytical model (GA-SSA), is able to iterate for an optimized solution of water quality and the 

properties of the benthic coral reef from the input of bottom reflectance spectrum data. These solutions are then 

compared to the conditions of water quality and benthic coral reef properties, under which the bottom reflectance 

spectra are measured in situ or simulated by the Hydrolight algorithm. Our results demonstrate that our new model is 

able to achieve accuracy as high as 80%. In addition, we also used a hyperspectral imager to collect a coral ecosystem 

spectral database in the Kenting area. 

 

1.  INTRODUCTION 

 

Coral reef ecosystem is located at the interface between land and sea, where the sediment loading is low and the 

water is clear (Ostrander 2000). It is sensitive to the environment change, including temperature (±30C), carbon ion 

concentration (±35 μmolkg-1) and pH (±0.1) (Hoegh-Guldberg et al. 2007). Therefore, coral reefs can serve as an 

ideal index of environmental change (Eakin, Kleypas, and Hoegh-Guldberg 2008). According to the recent survey 

of global coral reefs (Boutillier et al. 2009), the decreasing of coral reefs is accelerating, mainly due to the pollution 

caused by human activity in coastal area. To protect the coral reef ecosystem, various monitoring systems were 

developed in the past (Eakin et al. 2010). Generally speaking, there are two parts of these monitoring systems: (1) a 

stable platform with high spatial and temporal resolution, (2) an accurate algorithm to retrieve the water quality and 

bottom type simultaneously. 

 

If we want to achieve this monitoring system, we can use remote sensing method. There are many studies about the 

coral reef monitoring method by remote sensing. For examples: CASI (compact airborne spectrographic imager) 

(Mumby et al. 1998), IKONOS satellite images (Andrefouet 2003) and Ocean PHILLS (Ocean Portable 

Hyperspectral Imager for Low-Light) (Lesser and Mobley 2007). In this study, we used the underwater platform: 

V-Fin to carry the hyperspectral imager. When the depth was 10m, we could have 5 cm resolution hyperspectral 

image. We can use this advantage to improve the accuracy of coral reef ecosystem classification.  

 

Except the platform, the algorithm is the important method that we have to develop. The algorithm could retrieve 

the water quality and bottom type classification. In this study, we combine the GA-SA(Genetic Algorithm and the 

Semi-Analytical model) (Chang, Liu, and Wen 2007) with SSA(Shallow water Semi-Analytical model) (Lee et al. 

1998, 1999) to build the GA-SSA (Genetic Algorithm and the Shallow water Semi-Analytical model). By GA-SSA 



we can achieve accuracy as high as 80%. Either the bottom types classification or the retrieval of IOPs (Inherent 

Optical Properties). At next will begin to describe how to build this model. 

 

2.  MATERIAL AND METHOD 

 

There are two parts of data in this study, simulated data and in situ data. The simulated data that we need in this 

study is the spectral library. The spectral library has 11250 Rrs (remote sensing reflectance) data. We used the 

radiation transmission model: HydroLight to build the database. The database build is according to the bio-optical 

model and IOCCG (International Ocean Colour Coordinating Group) report (IOCCG 2003). The detail of the 

simulated data is at table 1. 

Table 1 Simulated data set 

 

These conditions are considered the coral reef ecosystem. According to these data sets can make our model near the 

in situ data. The original spectral is according to the reference (Maritorena, Morel, and Gentili 1994). 

 
 

Fig. 1 The original spectral of 5 different bottom types. Fig. 2 The database set at the same depth, and the same 

Chl concentration. (Coral sand) 
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Fig. 3 The database set at the same depth, different Chl 

concentration (mg/m3). (Coral sand) 

Fig. 4 The database set at the same Chl concentration, 

different depth. (Coral sand) 

 

From Fig.1 to Fig.4, we can find out that even the bottom have the same depth and Chl concentration, it still have 

very different spectral. It shows there have a lot of noise in the nature world. The problem that we try to solve is a 

complex one. So we combine the GA-SA with SSA to form the GA-SSA. By the GA-SSA, we can solve the 

complex non linear problem. 

Condition Data set range 

Chl (mg/m3 ) 0.03~1 （0.03、0.05、0.07、0.1、0.15、0.2、0.3、0.5、0.7、1、2、3、4、5）  

Optical model Case 1 water 

Bottom Types 5 different bottom types (Coral Sand, Clean Seagrass, Green Algae, Red Algae, 

Brown Algae) 

Depth(m) 5, 10, 15 

Zenith angle 60° 

Wind speed m/s 5 

Cloud coverage % 0 

Wavelength nm 400~700(Once per 10nm) 



Then we went to Kenting National Park in Taiwan to collect the in situ data. We towed the underwater platform 

V-Fin that carried the hyperspectral imager at the coral reefs area. At first, we used the IARR (Internal Average 

Relative Reflectance) method to correct the image. Then we calculated the fourth deviation to this hyperspectral 

image. After that we defined 6 different areas (A area to F area). We used a supervised classification method (Jia and 

Richards 1999) to classify underwater hyperspectral image data. The hyperspectral image that we processed will 

show in the result chapter. 

 

3.  RESULT 

 

3.1 Simulated data 
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Fig. 5 When the water depth is 5 m. The accuracy of 

bottom types retrieving. 

Fig. 6 When the water depth is 10 m. The accuracy of 

bottom types retrieving. 
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Fig. 7 When the water depth is 15 m. The accuracy of 

bottom types retrieving. 

Fig. 8 The linear percentage error of IOPs (absorption 

coefficient and backscattering coefficient) retrieving. 

The accuracy that we use is defined: %100
Samples Total

SamplesCorrectly  Retrieving
Accuracy     (Eq.1) 

The linear percentage error that we use is defined: 
110  RMSE     (Eq.2) 

The root mean square error is defined: 
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From Fig.5 to Fig.7, we can find out that when  the depth deeper and Chl concentration higher will cause the 

accuracy become lower. In particular Chl concentration has high correlation with accuracy. But we don't need to 

worry about the effect by the Chl concentration. In many studies indicate that Chl concentration at coral reef 



ecosystem is lower than 0.2 mg/m3, for example: Bahamas (23°46.5_N, 76°05.5_W) (Lesser and Mobley 2007). If 

we followed this standard (concentration less than 0.2 mg/m3), the accuracy will as high as 80%.  

 

The Fig.8 shows that the linear percentage error became lower when the Chl concentration became higher. Because 

of that Rrs is producing from combine water column signal with bottom signal. At low Chl concentration, the 

detector will receive more signals from the bottom. Because of that the signal from water column will not enough to 

determine the IOPs data. In other words, at high Chl concentration situation, the detector will receive the less 

signals from the bottom. Because of that the signal from water column will be stronger, so we can have the better 

result in retrieving IOPs. 

 

3.2 In situ data 

 

 
Fig.9 In this hyperspectral image we selected 6 areas (area A to area F). Then we used a supervised classification 

method to classify this underwater hyperspectral image data.  
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IARR-B
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IARR-F
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Fig. 10 This image shows the original radiance that we collect by hyperspectral imager. It was hard for us to find 

out the different between these 6 areas by this image. So we have to use the IARR (Internal Average Relative 

Reflectance) method to correct this image. 
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IARR-B
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IARR-F
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Fig. 11 We used the IARR (Internal Average Relative Reflectance) method to correct this image. After that, it was 

becoming easier for us to find out the different between these 6 areas by this image. But it was not enough for this 
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study. If we want to get the better result, we have to use the fourth deviation method to enhance the spectral 

characteristic.  
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Fig. 12 This image shows the result after the fourth deviation method. After that, it showed the characteristic 

wavelength bands between these 6 areas by this image. We got 22 characteristic wavelength bands(nm): 451、595、

606、607、609、613、620、624、631、634、638、639、645、648、655、667、670、677、678、679、688、

690 (22Bands). 

 

 
Fig. 13 We used 22 characteristic wavelength bands and classified the image by supervised classification method. 

The result of this study showed that we can classify the hyperspectral image by supervised classification method 

easily.  

 

The image that we have is with radiance data, not the remote sensing reflectance. So we can't enter these 

hyperspectral images data into GA-SSA. The goal in the future is going to collect the remote sensing reflectance. 

We will set the whiteboard under the sea and use the signal from the whiteboard to be the upwelling radiance. Then 

we can get upwelling radiance and down welling radiance. Finally we can use the ratio of upwelling radiance and 

down welling radiance to calculate the reflectance. 

 

4.  DISCUSSION 

 

The establishment of a database can be applied to future research. This study is also the first time in the Kenting area 

in Taiwan where a towed underwater vehicle (V-Fin) was used to collect underwater hyperspectral imaging. We use 

a supervised classification method to classify underwater hyperspectral data and assess the coral reef condition in 

Kenting National Park. In the future, we will continue to improve the technology of underwater image collection and 

use GA-SSA to retrieve the water quality and bottom type classification. Once established, this system will enable us 

to monitor and address changes in our valuable coral reef ecosystem. 
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