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ABSTRACT: Carbon stock estimation of above ground tree biomass is important for ‘reducing emission from 

deforestation and forest degradation’ (REDD) credit to mitigate climate change due to anthropogenic causes. 

Automatic delineation of individual tree crown (ITC) techniques results in a substantial error due to presence of 

intermingled canopy trees in the estimation of above ground carbon stock. The aim of this study was to establish 

regression models for the relationship of canopy projection area (CPA) with forest tree parameters, i.e., diameter at 

breast height (DBH), basal area (BA), biomass and carbon stock of standalone and intermingled canopy trees of 

dominant species for the prediction of above ground carbon stock. This study was carried out in subtropical 

broadleaf forest in Chitwan, Nepal. High resolution GeoEye satellite image was used for manual delineation of 

CPA of standalone and intermingled canopy trees of the dominant species. Above ground tree dry biomass was 

calculated from the field measured DBH using allometric equation. Above ground tree carbon stock was obtained 

by multiplying their dry biomass with the factor 0.47. Individual basal area of intermingled canopy trees was 

calculated separately and was summed up (ΣBA) along with the summation of their carbon stock (Σcarbon). 

Correlation analysis was carried out to assess the linear relationship between CPA, DBH, BA, biomass, and carbon 

stock. Four types of functions, i.e., simple linear, quadratic, logarithmic and power, were used to fit the data using 

least square regression method. Shorea robusta, Schima wallichii and Terminalia alata were found dominant tree 

species in the study area forest. The relationship of CPA with DBH of standalone trees was found linear with 

coefficient of determination (R
2
) ranging from 0.63 for Schima wallichii to 0.69 for Shorea robusta and 0.74 for 

Terminalia alata. The relationship of CPA with biomass or carbon stock of standalone trees was also revealed 

linear with R
2
 ranging from 0.53 for Schima wallichii to 0.62 for Terminalia alata and 0.65 for Shorea robusta. The 

relationship of CPA with ΣBA and Σcarbon of intermingled canopy trees of Shorea robusta was also found linear 

with R
2 

of 0.29 and 0.25 respectively. Simple linear regression model resulted in the least error for the prediction of 

carbon stock of standalone and intermingled canopy trees. 

 

 

1. INTRODUCTION 

 

The United Nations Framework Convention on Climate Change (UNFCCC), held in June 1992, has been marked 

the global commitment on climate change. The objective of the Convention is to stabilize greenhouse gas (GHG) 

concentrations, which is the main anthropogenic cause to climate change, in the atmosphere at a level that would 

prevent dangerous anthropogenic interference with the climate system (UNFCCC, 2010). The Kyoto protocol, a 

binding protocol to UNFCCC, requires party countries to limit or reduce GHG emission (Gibbs et al., 2007). 

Forests, which occupy 31% of the total land area of the world (FAO, 2011), play a significant role in the global 

carbon cycle. They are the large carbon pool and acts as both carbon source and sink according to their 

management. Growing vegetation absorbs CO2 from the atmosphere for the photosynthesis process and stores it in 

the form of carbon in their biomass. REDD stands for ‘reducing emission from deforestation and forest 

degradation’ was first introduced into the Conference of the Parties (CoP) agenda of UNFCCC at its eleventh 

session in Montreal in 2005 (UNFCCC, 2010). It provides financial incentives to developing countries that reduce 

GHG emissions from forests. Credit from reduced emissions would be quantified and sold in an emerging 

international carbon market (Gibbs et al., 2007). Furthermore, it extends the opportunities of getting fund from 

developed countries. The initiative has commonly been accepted as a low cost option to deliver significant climate 

change mitigation benefits along with co-benefits such as biodiversity conservation and poverty alleviation that 

leads to win - win situation to all parties. 

 

Nepal is a developing country with a forest cover of about 5.83 million hectares or 39.6% of the total geographical 

area of the country. Community forestry is the top priority programme for the forestry sector in the country. 
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Community forest management forms an integral part of the rural subsistence economy in many parts of Nepal 

(Karky & Skutsch, 2010). More than 1 million hectares of forestland or about one quarter of the country's forest are 

being managed by local communities (DoF, 2010). However, according to Ministry of Forests and Soil 

Conservation (2009), deforestation rate is 1.7 %. Deforestation and forest degradation have been a great concern for 

Nepal as well for biodiversity conservation, livelihood of people and to address global commitment of mitigating 

impacts of climate change. Moreover, Nepal is a party country for UNFCCC and the Kyoto Protocol that requires 

reporting carbon balance of the country. The carbon pools in forest ecosystem are comprised of above ground 

biomass, below ground biomass, deadwood, litter and peat soil (IPCC, 2006). Of them, above ground biomass 

(hereafter above ground biomass is referred to as biomass) of trees contains the largest carbon pool and is the most 

directly impacted by deforestation and forest degradation. Biomass estimation is the primary step in quantifying 

carbon stock of a forest as dry biomass contains about 47 % carbon (IPCC, 2006).  Biomass of trees can be derived 

directly by measuring sample tree attributes in the field or indirectly by transforming available volume data from 

forest inventory (IPCC, 2006). Although the direct way to quantify biomass is accurate for a particular location, it is 

too time consuming, expensive, destructive and impractical for country level analysis. There is no methodology to 

measure biomass of trees across a large area directly. Remote sensing (RS) provides alternatives to conventional 

forest inventory to estimate biomass and carbon stock across a large area (Gibbs et al., 2007).  

 

The identification of relationship between DBH and CPA (derived from satellite image) allow predicting above 

ground tree biomass at a larger scale. Allometric equations can be used to estimate biomass that relate with the tree 

parameter, i.e., DBH (Basuki et al., 2009; Chave et al., 2005). Allometry means the relative growth. Tree allometry 

describes the relationship between its different diamentions. Allometric equations are developed on the basis of 

destructive sampling (Basuki et al., 2009). Individual tree crown (ITC) or CPA has been extracted from very high 

resolution (VHR) satellite image using ITC software and object oriented image analysis for forest stand information 

(Culvenor, 2003; Katoh et al., 2009; Leckie et al., 2005).  Object oriented image analysis can make full use of 

image information which combine spatial as well as spectral information and extract objects at multiple scales. 

Whereas conventional pixel based image analysis, mainly focus on spectral information, is irrelevant using VHR 

satellite data as the target object size, for instance, tree crown is larger than a pixel (Greenberg et al., 2005). 

Individual tree crown delineation using high resolution imagery and ITC software technique is appropriate and 

consistent for conifer forests with abundant shade between trees that provides a crown outline (Katoh et al., 2009; 

Leckie et al., 2005). Indistinct or absence of valley of shade between trees in broadleaf forest stand makes it 

difficult to delineate individual tree crown using ITC software (Chubey et al., 2006). Automatic delineation of 

individual tree crown techniques such as valley following and pattern matching has wide variation in their 

accuracy. Their accuracy varies from 50 to 80 % (Bunting & Lucas, 2006). They all have poor accuracy attributed 

largely to overtopping of smaller crowns and presence of intermingled crowns or overlapped canopy in complex 

forest (Bunting & Lucas, 2006). Tree crown identification algorithm (TIDA) cannot separate overlapping or 

adjacent intermingled tree crowns, which is common in natural forest, and computation is very intensive that cannot 

be applied over a large area (Asner et al., 2002; Palace et al., 2008; Song et al., 1997).  

 

Automatic ITC delineation techniques have been unable to separate canopies seen as one canopy in the image but in 

fact intermingled of two or more canopies, which causes substantial error for biomass estimation (Browning et al., 

2009; Hirata et al., 2009 ; Palace et al., 2008). Study has not yet explained the relationship between canopy 

delineated from the image, which are seen as one canopy in the image but in reality formed from two or three or 

sometimes more crowns of trees, and their corresponding DBH, BA, biomass and carbon. In this context, CPA of 

standalone as well as intermingled canopy trees was manually delineated from GeoEye satellite image. The 

relationship between CPA, DBH, BA, biomass and carbon of standalone and intermingled canopy trees was 

investigated using correlation and regression analysis. The main objective of this work is to establish regression 
models for the relationship of CPA delineated from the high resolution GeoEye satellite image with forest 
tree parameters, i.e., DBH, BA, biomass and carbon stock, of standalone and intermingled canopy trees of 
the dominant species for the prediction of above ground tree carbon stock. 
 

2. MATERIALS AND METHODS 

 

2.1 Study Area 

 

The study area, covering 2374.67 ha, is located in Chitwan district of the Central Development Region of Nepal 

(Figure 1). There are forty village development committees in the district. Of them, study area is limited to four 

village development committees, namely, Shiddi, Shaktikhor, Chainpur and Pithuwa. The natural subtropical forest 

with broadleaf species is dominating the study area. Shorea robusta is the dominant tree species (Figure 2-2). The 

main associated tree species are Terminalia alata, Terminalia bellirica, Lagerstromia parviflora, Schima wallichii, 

Semicarpus anacardium, Mallotus phillippensis, Cassia fistula, Cleistocalyx operculatus, Careya arborea, 



Holarrhena pubescens, Adina cordifolia, Syzygium cumini, Aesandra butyracea, Terminalia bellirica. The area lies 

in the central climatic zone of the Himalayas. The subtropical monsoon climate exists in the area. Usually monsoon 

rain starts in mid-June and last till late September. During the period, most of the annual precipitation falls in the 

form of rain. Annual average precipitation is 1830mm that varies from 1584 to 2287mm. Annual mean temperature 

is 24
o
C that ranges from 36

o
C to 18

o
C (Panta et al., 2008). The area is mountainous with highly undulating terrain. 

The altitude varies from 300m to 1200m above sea level. The land is characterized by many steep gorges and slope 

varies from 30% to more than 100%. The area is drained by Khayarkhola stream having many small tributaries 

feeding into it.  

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 1:  Location of the study area 

 

2.2 Research Methods 

 

General flow diagram of research methods is presented in Figure 2. It mainly consists of image processing (violet 

colour block), field data collection especially DBH of trees (blue colour block) and data analysis, i.e., correlation 

and regression analysis (green colour block). RQ 1, RQ 2 and RQ 3 in the diagram refer to research question 1, 2 

and 3 respectively. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Research Method. 
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GeoEye – 1 images acquired on 02 November 2009 were used for this study. Orthorectified images were provided 

by ICIMOD. They were geo-registered in the Universal Transverse Mercator (UTM) coordinate system (WGS 84, 

Zone 45 N). 

 

 

3. RESULTS  

 

Regression equations with coefficients of determination are shown in scatter plots in Figure 3 for the selected 

simple linear models. The strength of relationship of CPA with DBH was the highest, with intercept more than 

zero. This suggested that the equation is suitable to predict outside the range of delineated CPA (Anderson et al., 

2000). However, the intercept terms in the regression equations of CPA with biomass and carbon were found less 

than zero and unsuitable to predict outside the range of delineated CPA 

 

 

 
 

Figure  0: Linear regressions of DBH, biomass and carbon on CPA of standalone trees of Shorea robusta 

 

 

Regression equations with coefficients of determination are shown in scatter plots (Figure 4) for the selected simple 

linear models. The strength of relationship of CPA with DBH was found the highest. The y- intercepts in all cases 

were found less than zero. It implied that the equations are not suitable to predict outside the range of delineated 

CPA (Anderson et al., 2000). 

 

 

 
Figure 4: Linear regressions of DBH, biomass and carbon on CPA of standalone trees of Schima wallichii 

 

Regression equations with coefficients of determination are shown in scatter plots (Figure 5) for the selected simple 

linear models. The scatter plots reveal that relationships between the parameters were weak. These plots do not 

show any distinct nonlinear pattern. 

 



 
Figure 5:  Linear regressions of ΣBA, Σbiomass and Σcarbon on CPA of intermingled canopy trees of Shorea  

robusta 

 

 

4. CONCLUSIONS  

 
Manually delineated CPA from GeoEye satellite image which is intended to be used to predict above ground tree 

carbon stock of subtropical broadleaf forest is not having high R
2
 to the level that the CPA can be utilized to model 

or predict carbon stock on an operational base. The identified simple linear regression models having the least error 

are not applicable for the prediction of above ground tree carbon stock of broadleaf forest in hilly terrain. The 

vertical projection area of tree canopy is subject to error because of low sun angle and shadow in the scene. This is 

further exacerbated by the mountain topography of the study area. In addition, manual delineation of CPA has been 

affected by the fuzziness tree crown boundary in the image. 

 

 Nevertheless, all the research questions are well answered as follows: 

 

Is there any relationship between CPA, DBH, biomass and carbon of standalone trees of the dominant species?  

There is a linear relationship between CPA, DBH, biomass and carbon of standalone trees of the dominant species. 

The Pearson’s correlation between CPA and DBH was 0.83, 0.80, and 0.86 for Shorea robusta, Schima wallichii 

and Terminalia alata respectively. The correlation between CPA and biomass was 0.80, 0.73 and 0.79 for Shorea 

robusta, Schima wallichii and Terminalia alata respectively. The correlation between CPA and carbon was also 

0.80, 0.73 and 0.79 for Shorea robusta, Schima wallichii and Terminalia alata respectively. The correlation 

between them were highly significant (P<0.001). 

 

Is there any relationship between CPA, ΣBA, Σbiomass and Σcarbon of intermingled canopy trees of the 

dominant species? 

There is a linear relationship between CPA, ΣBA, Σbiomass and Σcarbon of intermingled canopy trees of Shorea 

robusta.  The Pearson’s correlation of CPA with ΣBA, Σbiomass and Σcarbon was 0.54, 0.50 and 0.50 respectively. 

The correlation between them were highly significant (P<0.001). 

 

Which regression models best explain the relationship between CPA, DBH, BA, biomass and carbon of 

standalone and intermingled canopy trees of the dominant species? 

Simple linear regression models best explain the relationship between CPA, DBH, biomass and carbon in 

standalone trees of Shorea robusta, Schima wallichii, and Terminalia alata. Similarly, simple linear regression 

models best explain the relationship between CPA, ΣBA, Σbiomass and Σcarbon of intermingled canopy trees of 

Shorea robusta. The precision and predictive accuracy of the selected simple linear models were not high enough to 

predict carbon. 
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