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ABSTRACT: In planetary exploration missions, high accuracy mapping from orbital and rover images is 
fundamentally important for scientific investigation, landing-site selection, precision landing, and rover navigation. 
Stereo image matching is a critical technique for 3D planetary mapping. A new global image matching method is 
presented based on feature points and Markov Random Field (MRF) model. The method extracts feature points, 
predicts disparity range, minimizes energy function of MRF, and consequently gets dense matching results. 
Experimental results using rover images from the Mars Exploration Rover mission and orbital images from 
Chang’E-1 lunar mission are presented to demonstrate the effectiveness of the proposed method.  
  
1.  INTRODUCTION 
 
Planetary exploration usually includes orbital and rover missions. Orbital images map the planet globally and 
provide geometrical and spectral information for landing-site selection and precision landing; rover images provide 
more detailed information of the landing site for daily mission operations on the planet’s surface. In recent years 
many studies have been conducted on geometric modeling and stereo mapping from orbital images (Albertz et al., 
2005; Kirk et al., 2008; Li et al., 2011) and rover images (Deen and Lorre, 2005; Li et al., 2005). Stereo image 
matching is of great importance for 3D terrain construction in planetary mapping using orbital or rover images. 
Comparing with earth remote sensing images, orbital images of planetary surfaces (e.g., Moon and Mars surfaces) 
are usually lack of texture. For rover images of planetary surfaces, in addition to low texture, range discontinuities 
usually exist along the boundaries of prominent features such as large ridges and rocks. These pose special 
challenges to image matching and 3D terrain reconstruction.  
 
A large number of stereo matching methods have been developed (Scharstein and Szeliski, 2002). Among various 
image matching methods, global image matching methods generally perform better than local image matching 
method in dealing with low-texture areas, parallax discontinuities and occlusions. So far, many global matching 
methods, e.g., Markov Random Field (MRF) based method, have been proposed for 3D modeling in computer 
vision applications (Szeliski et al., 2006). However, little research on global image matching has been conducted in 
planetary mapping. It is desirable to study global image matching method for precision planetary mapping purpose.  
 
This paper presents a new method of matching based on feature point constrained MRF model for Mars and Lunar 
images. The rest of the paper is organized as follows: Section 2 describes the proposed method; Section 3 shows the 
experimental results using orbital and rover images respectively; Conclusions are given in Section 4. 
 
2.  FEATURE POINT CONSTRAINED MARKOV RANDOM FIELD METHOD 
 
The new global image matching method is based on integration feature point matching and MRF model, which we 
call it Feature Point constrained Markov Random Field method (FP-MRF). The main idea is to use reliable feature 
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matching result to guide and control the global optimization of MRF so that to improve the efficiency and accuracy of 
the global matching. Figure 1 shows the processing flowchart of the method. Firstly feature points are extracted and 
matched from stereo images; and then feature points are used to predict disparities (parallaxes) of the remaining 
pixels. Next, image matching is applied using normalized correlation coefficient to get initial disparities. The initial 
dense matching result is refined through global optimization of an energy function of MRF. The global image 
matching runs iteratively over the full overlapped area until disparity labeling is stabilized. Finally the global 
matching result is refined with least squares matching to reach sub-pixel accuracy. Technical details of the method 
are given in the flowing subsections. 

 

Figure 1. Flowchart of FP-MRF global image matching. 
 

3.1 Feature point extraction and matching 
 
After image preprocessing using Gaussian filter and histogram normalization to remove noises and illumination 
differences, feature points are extracted by Förstner operator according to Equation (1). 
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where F(g) is the feature value of an image point; ,x yg g are 1D gradients of point; xyg is a 2D gradient. To 

extract sufficient feature points, the image point with the local maximum feature value in a 3*3 grid is considered 
as a feature point. Feature point matching is performed using normalized cross correlation coefficient. Matching 
error detection is firstly performed using left/right consistency check. Further matching error detection is conducted 
using a RANSAC (Fischler and Bolles, 1981) algorithm with similarity transformation model in a local area. After 
matching error elimination, the remaining matched feature points are used for subsequent global matching. 
 
3.2 Global image matching  
 
3.2.1 FP-MRF model: In this model, stereo matching is considered as a pixel labeling problem, which is naturally 
represented in terms of energy minimization. The energy function has two terms: one term penalizes solutions that are 
inconsistent with the observed data, while the other term enforces some kind of spatial coherence. Stereo matching is 
formulated to find a disparity function d that minimizes the following energy function. 
   (2) ( ) ( ) ( )energy data smoothE d E d E d 

where the data term  measures how well the disparity fits the given stereo image pair, the smoothness term 

encodes a smoothness assumption on disparity, and 

( )dataE d

( )smoothE d   is a weight to balance these two terms. 

 
The data term is always measured by the difference between pixels and corresponding homologous points. Using a 
fixed window centered at the current pixel, correlation coefficient performs poorly in the vicinity of intensity edges 
and poorly textured regions. To overcome this problem, we use multi-window correlation in FP-MRF to measure 
their dissimilarity. For each pixel, image correlation is performed using nine different windows in which the current 
pixel is in different locations in the windows; the disparity with the maximum correlation coefficient  is taken as 

the output of the multi-window correlation. The value of  ranges from -1 to 1. To avoid inverse correlations we 
define the data term as  
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The smoothness term encodes the smoothness assumptions to make the optimization computationally tractable. The 
smoothness is restricted to only measuring the differences between neighboring pixel’s disparities. The common 
used function is the truncated linear model, where the cost increased linearly based on the distance between the 
labels ( )f p  and ( )f q , 

 ( , ) min( , ( ) ( ) )f p q f p f q    (4) 

where ( , )f p q  is disparity discontinuity cost,  controls when the cost stops increasing. So the smoothness term is  
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3.2.2 Disparity range prediction: Many existing global matching algorithms set the same disparity range for all 
the pixels. This makes the disparity space very large and energy minimization very slow. Since feature points have 
been reliably matched, we can get disparity range for each pixel adaptively. We use both grid and triangulated 
irregular network (TIN) to assign disparity range to each pixel. For an unmatched point in left image, its disparity 
range is computed through linear interpolation of parallaxes from vertices of the triangle that covers the point. 
Meanwhile, the image is divided in to several grids and the disparity range for an unmatched point is also predicted 
from neighborhood grids. Disparity range from grids is utilized to better handle discontinuities in places where 
linearity assumption might be violated. 
 
As shown in Figure 2, black square represents unmatched point P; small black triangles are matched feature points; 
blue squares are 33 neighborhood grids, which are numbered as 0,1,2…8; red square is the grid where P located. 
The prediction steps are as follows: 
 

 
 

Figure 2. Disparity range estimation. 
 
(1) Search the triangle where P located, the disparity of P is calculated by linear interpolation: 
 P P Pd ax by c     (7) 

where Pd  is the interpolated disparity of P, ,P Px y  are coordinates of P,  are coefficients determined by 

coordinates and disparities of the three vertexes. Then the disparity range at P is set as 

, ,a b c
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where 1D  is disparity range set after linear interpolation, is the searching step-size. r
(2) Search the red grid index where P located, which is 0 in Figure 2, and get disparity set of all feature point in its 
33 neighborhood grid, new disparity D2 is  
      1 1 1 2 2 22 , , , , , ,n n nD d r d d r d r d d r d r d d r           (9) 

where n is the number of all feature points in the 33 neighborhood, 10n  in Figure 2. 

(3) Compute the union of two sets 1D and 2D , and set it as the final disparity range of P.  
 
3.2.3 Minimization of energy function: The belief propagation (BP) algorithm works by passing messages around 
the graph defined by the four-connected image grid. A message presents the probability that the receiver should be 
at a disparity according to all information from the sender up to the current iteration. BP’s message passing 
provides a time-varying adaptive support region for stereo matching to deal with textureless regions and depth 
discontinuities (Sun et al, 2003). In order to improve the efficiency of global matching, we use hierarchical belief 



propagation (HBP) (Felzenszwalb et al, 2006) to estimate the minimum of energy function. HBP uses negative log 
probabilities to transfer max-product to min-sum, and consider linear time message updates, bipartite graph 

message passing schedule and multi-grid techniques to speed up the algorithm. Let be the message that node t
p qm 

p sends to its neighboring node  at iteration , all entries in four directions are initialized to zero, and then new 

messages are computed iteratively as 
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where  represents neighbors of ( ) \N p q p other than . After iterations, a belief vector is computed for each node: q
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Finally, the label *
qf  that minimizes  individually at each node is selected as the final matching result.  q qb f

 
4.   EXPERIMENTAL RESULTS 
 
4.1 Pancam images of Mars Exploration Rover (MER) 
Pancam is a pair of stereo cameras mounted on the camera bar of the rover with the stereo base line of 30 cm and the 
field of view of 16.8°×16.8°. The stereo images have been used to generate a series of mapping products to support 
mission operations (Di et al., 2008). The mapping capability of Pancam (the measurement error) is less than 1m 
within a range of 55m (Di et al., 2007). In this research, we use the epipolar-resampled stereo images (FFL files) to 
test our new matching method. The associated range maps (RNL files) are also downloaded for comparison purpose. 
Both image and range data can be downloaded from the website of MER Analyst’s Notebook 
(http://an.rsl.wustl.edu/mer/mera/mera.htm), which is a node of NASA’s Planetary Data System (PDS).  
 
We have tested the proposed method using Pancam data acquired by Spirit rover at positions AACI (sol 488). A 
stereo pair are shown in Figure 3(a) and (b) respectively. After feature point matching and outlier elimination, 3500 
points are matched. TIN and feature points are shown in Figure 4(a). Figure 4(b) and (c) show range map from PDS 
and our method respectively. In the two range maps, black areas represent pixels with no homologous points. It can 
be observed that the new method significantly reduced discontinuity areas. Moreover, DEM and DOM are 
generated and are shown in Figure 5. Fine details of the terrain are revealed in the DEM, showing that the 
developed global image method is effective.  
 

  
(a) (b) 

Figure 3. Pancam stereo images acquired by Spirit rover. 
 

   
(a) Matched feature points and TIN (b) Range map from PDS (c) Range map from our method 

 
Figure 4. Feature points, TIN and range maps. 



 

  
(a)DEM (b) DOM 

Figure 5. DEM and DOM. 
 
 
4.2 CE-1 CCD stereo images  
 
China’s first lunar probe Chang’E-1 (CE-1) carried a three line pushbroom CCD camera to map the moon surface 
in 3D. At a 200 km altitude, the image spatial resolution is 120 m and the swath width is about 60 km (Li et al, 
2010). CE-1 CCD images have been released for public access. To test effectiveness of the proposed method for 
poor texture image, CE-1 stereo images (Level 1 product) of a 61km by 120 km area are used in the experiment. 
The image is 512 columns by 1001 rows, centered at 64S and 25E. The forward- and backward-looking images are 
shown in Figure 6(a) and (b) respectively. Overall, the textures are poor and challenging stereo matching.  
 
After feature point matching and error elimination, 2468 points are matched and are used to control the consequent 
global dense matching. Disparity map after FP-MRF global matching are shown in Figure 6 (c). In order to show the 
terrain map more directly, 3D coordinates in LBF are transformed into longitude, latitude and altitude. Figure 7 (a) is 
a perspective view of the generated DEM, and (b) is the generated DOM overlaid on the DEM. It can be seen the 
terrain details particularly the craters are revealed in the DEM. 
 

       
(a) Left image (b) Right image (d) Disparity map 

 
Figure 6. CE-1 images and matching result. 

 

 
(a)DEM (b) DOM 

Figure 7. CE-1 DEM and DOM. 
 
5. CONCLUSIONS 
 
In this research we proposed a global image matching method named as FP-MRF for planetary mapping. The method 
is flexible in terms of incorporating feature point and constraints. Experimental results using Spirit rover data and 



CE-1 CCD images demonstrated the effectiveness and high accuracy of the new method in dealing with regions of 
poor texture and/or range discontinuities. Further research will be performed to improve the computational efficiency 
of the global image matching method. And more planetary data will be used for validation of the new method. 
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