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ABSTRACT: Land use/land cover (LULC) mapping is of great significance in scientific, scholarly research, planning 

and management. It is observed that multispectral classification of optical remote sensing data is unable to separate 

many of the land use land cover classes due to spectral overlapping of these classes. SAR backscattering provides 

information on dielectric property of the materials, surface roughness and surface geometry of the terrain in general and 

nature of scattering in relation to polarization of the EM wave (e.g., surface scattering, volume scattering, multiple 

scattering, odd bounce or even bounce scattering, polarization randomness and anisotropy) in particular which can be 

utilized to characterize the land use land cover classes. Similarly, repeat-pass inteferometric SAR (InSAR) coherence 

represents temporal decorrelation property of the scatterers in each pixel which can be utilized to characterize the 

LULC classes. In the present study, ALOS PolSAR (Full polarization-Quad Pol. Mode) and InSAR (HH polarization – 

Fine Beam Single) data were used to characterize the LULC classes of part of Dehradun district of Uttarakhand state. 

Polarimetric decomposition has been performed by different techniques namely Freeman (Surface – Volume – Double 

bounce scattering), Krogager (Surface – Double bounce – Helical scattering), Cloude-Pottier (Entropy – Anisotropy – 

Mean scattering angle or H-A-) for understanding polarization-specific scattering behavior of the LULC classes. 

InSAR coherence image of a 46-day data pair was generated to characterize the LULC classes with respect to temporal 

decorrelation property of the scatterers. Subsequently, classification of LULC classes was performed by support vector 

machine (SVM) algorithm based on the selected polarimetric parameter. Finally, a set of parameters, obtained from 

different polarimetric decomposition techniques to characterize, scattering behavior of the LULC classes, which is best 

suited was selected.  

 

INTRODUCTION 

 

In the present day world, Land Use and Land Cover mapping is of great significance in scientific, scholarly research, 

planning and management. Regional land use pattern reflects the character of interaction between man and environment 

and the influence of distance and resources based on mankind’s basic economic activities. 

 

The classification of PolSAR images has become an important research topic since PolSAR images through ENVISAT 

ASAR, ALOS PALSAR and RADARSAT-2 were available. Many classification methods for PolSAR and InSAR data 

have been explored by researchers [1], [2]. Recently some polarimetric decomposition theorems have been introduced 

[4], [9], and classification methods based on the decomposition results were also explored by some researchers [5], 

[14], [15]. The polarimetric parameters extracted using the polarimetric decomposition methods are related to the 

physical properties of natural media and can be used as descriptive features for classifying observed objects. Fusion of 

physical and textural information derived from various SAR polarizations is helpful to the improvement of 

classification results [3], [6]. The information from interferometric SAR data indicates the structure and complexity of 

the observed object. Combined these different capabilities, substantial improvements in LULC classification can be 

achieved [15], [16]. However, so far most of the classification methods for PolSAR and InSAR data are pixel-based. 

The performance of pixel-based classification methods is affected by speckles, and it is hard to utilize the abundant 

information contained in PolSAR and InSAR data by using these methods. Moreover, the results of the pixel-based 

methods are almost incontinuous raster format maps, which are hardly used to extract objects of interest and update 

geographical information system database expediently. 

 

The objective of this study is to explore a new method for classification of PolSAR and InSAR data, and to investigate 

the potential of PolSAR and InSAR data for LULC classification. A novel classification method, polarimetric 
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decomposition parameters selected, Interferometric SAR, and SVM algorithm, was proposed for the classification of 

ALOS PALSAR PolSAR and InSAR data. In this method, 9 PolSAR parameters and 1 interferometric coherence image 

were first extracted by using different polarimetric decomposition methods (Freeman, Krogager and H/A/) and 

combined with the elements of the scattering, coherency and covariance matrix to form a multichannel image. Next, 

during the characterizing image analysis was performed by using training data (sample data) on the different 

decomposition image of ALOS PALSAR PolSAR data. Meanwhile, a total of 9 classes features were extracted for 

different decomposition. Then, for classification support vector machine algorithm was used for different 

decomposition and for PolSAR parameters selection. Finally, the LULC classification result of ALOS PALSAR 

PolSAR data of different decomposition and combination of the selected PolSAR parameters was compared. 

 

STUDY AREA AND DATA 

Study area 

The study area chosen for the research is a part of Dehradun district, Uttrakhand, India. The geographic extent of the 

study area is (30
0
 25’ 48’’ N, 77

0
 48’ 04’’ E) to (30

0
 06’ 05’’ N, 78

0
 12’’ 37’’ E). It has been observed that, Land Cover 

in this study area was mostly forest which includes close forest, open forest and scrubs. In this area dry river bed, 

agricultural land and some other land which covered with mango orchard, tea garden was identified. Different crops 

like mustard, sugar cane, wheat and also other crops in small entities were observed in this study area. 

 

Figure 2.1.1: Study area 

Data used 

Data used in this study was given in below table: 

Table 2.2.1: Data used 

N
0
  SceneID  Ground Reselution 

/DPI 

Format Date 

ALOS PALSAR (POLSAR) 

1 ALPSRP230860600  

(OffNadirAngle="23.1")  

26.4 m COES 25/05/2010 

LANDSAT 7  ETM + 

2  LE71460392009146ASN00  30 m GeoTIFF 26/05/2009 

IRS-P6 LISS-III 



3   23.5 m TIFF 15/03/2009 

                                                                     TOPOSHEET 

4  53-J/3; 53-F/15 

53-J/4; 53-F/16  

500 dpi Hardcopy/ 

Softcopy 

 

5 Field data  200 GPS Points   

 

Field data 

 

Fieldwork was performed to collect the GPS point and to observe the characteristics of land use land cover at Dehradun 

and its surroundings. Using GPS instrument, we observe land use land cover classes like dense urban, Mixed urban, 

Close forest, Open forest, Scrub, Crop land (after harvesting ), Cropland (before harvesting ), Grassland, and 

wasteland (Dry river), their characteristics and positions was done and field photographs were taken for interpretation 

as of polarimetric parameters, for their as training samples for characterization and classification. 

 

Target decomposition and characterisation 

Freeman decomposition 

Freeman proposed a three-component scattering model in which covariance matrix [C] of polarimetric SAR data is 

decomposed for information extraction [9]. Freeman decomposition describes scattering mechanisms as due to three 

physical mechanisms, namely surface scattering, double-bounce scattering and volume scattering: 

       volumeVdoubleDsurfaceS CfCfCfC   (3.1) 

According to this model, the measured power P may be decomposed into three quantities: 
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The three-component scattering model based on covariance matrix has been successfully applied to decompose PolSAR 

image under the reflection symmetry condition 0
**
 HVVVHVHH SSSS . This method is based on simple 

physical scattering mechanisms (surface scattering, double-bounce scattering, and volume scattering), just as shown in 

Fig. 3.1a, the contributions of each of the three scattering mechanisms to the total power are shown for each pixel, with 

surface scattering colored blue, volume scattering green, and double-bounce scattering red. Result in Fig. 5 shows that 

volume scattering meets the observation for forest very well. Farmland has surface scattering and double-bounce 

scattering dominant. This can be interpreted as indication that the longer wavelengths can penetrate the relatively short 

vegetation in farmland area and the backscatter is mostly from the underlying ground. Therefore, Freeman 

decomposition can describe different natural targets very good and is powerful for PolSAR image decomposition for 

natural distributed target areas. However, man-made buildings are also present the volume scattering, thus this model 

cannot distinguish forest and man-made buildings. 

 

 

 

 

 

 

 

 



Freeman decompostion Krogager decomposition H/A/ decompostion 
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b) 

 
c) 

Figure 3.1: Image decomposition 

Krogager decomposition  

According to Krogager, the complex symmetric scattering matrix can be decomposed into three components on the 

circular basis, which corresponding to a sphere, a diplane and a right- or left- 

wound helix, respectively [12]: 

       

















































h

j

h

d

ds

jj

hhddss

jj

vh

j

j
ekkkee

SkSkSkeeS

s

s

1

1

2cos2sin

2sin2cos

10

01

}{

2

),(







 
 (3.3) 

The phase φ is referred as the absolute phase, whose value depends on the distance between the radar and the target 

under study. Due to the arbitrary value that this phase can present, it is often considered that the Krogager 

decomposition presents 5 independent parameters given by {φs, θ, ks, kd , kh } plus the absolute phase given by φ. 

In order to calculate the value of the parameters {φs, θ, ks, kd, kh} plus the absolute phase φ, a reformulation of (3.3) 

with the objective to simplify the process is next presented. Now, if we consider the measured scattering matrix 

expressed in the circular polarization basis (r, l), the Krogager decomposition is then 
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From (2.4), it can be easily observed that the response of the sphere can be obtained from |Srl|  



ks = |Srl| (3.5) 

the terms Srr and Sll represent, directly, the diplane component of the decomposition (3.4), but two cases of analysis 

must be considered according to the difference in absolute value of Srr and Sll. This is necessary in order to 

accommodate the difference in the scattered power in the right and left circular polarizations. When S ll reprsents the 

diplane component, it occurs that |Srr| > |Sll|. Hence 

|| lld Sk 
 (3.6) 

|||| llrrh SSk 
 (3.7) 

And the helix component presents a left sense. On the contrary, when it is Srr the term which represents the diplane 

component, it occurs that |Sll| > |Srr|.  

|| rrd Sk 
 (3.8) 

|||| rrllh SSk 
 (3.9) 

And the helix has a right sense. Finally, from (3.5), the phase components are 
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In order to relate the formulations of the Krogager decomposition presented in (3.3) and (3.4), the following relations 

are useful 
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H/A/ decomposition  

The eigenvector – eigenvalue based decomposition is based on the eigen decomposition of the coherency matrix [T3] 

[4], [5]. According to the eigen decomposition theorem, the 3x3 Hermitian matrix [T3] can be decomposed as follows 

  1

3333 ]][[][


 UUT  (3.16) 

The 3x3 real, diagonal matrix [3] contains the eigenvalues [T3] 
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Where 0321    

The 3x3 unitary matrix [U3] contains the eigenvector ui for i = 1, 2, 3 of [T3] 

[U]=[ u1 , u2 , u3]     (3.18) 

The eigenvectors ui for i = 1, 2, 3 of [T3] can be formulated as follows 
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Considering the expressions (3.17) and (3.18), the Eigen decomposition of [T3] , i.e., (3.16), can be written as follows  

T
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Where sumbol *
T
 stands for complex conjugate. As (3.20) shows, the rank 3 matrix [T3] can be decomposed as the 

combination of three rank 1 coherency matrices formed as 

T

iiuuT *

3 ][    (3.21) 

This can be related to the pure scattering mechanisms given at (3.19). 

The eigenvalues (3.17) and the eigenvectors (3.18) are considered as the primary parameters of the eigen decomposition 

of [T3]. In order to simplify the analysis of the physical information provided by this eigen decomposition, three 

secondary parameters are defined as a function of the eigenvalues and the eigenvector of [T3]: 
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Where pi, also called the probility of the eigenvalue i, represent the relative importance of this eigenvalue respect to 

the total scattered power, since 
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* Anisotropy 
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* Mean alpha angle 
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The Eigen decomposition of the coherency matrix is also referred as the H/A/ decomposition. 

 

Characterisation and analysis 

 

Mean and standard deviation values were calculated from each training samples of all decompositions. Values were 

tabulated and graphs for those values were plotted. Using those graph patterns, we identified which parameter plays key 

roll in classification of Land Use Land Cover classes. 

 

Figure 3.1: Freeman decomposition characterization  

It is clear from above trends that volume and single bounce scattering can be used for classification of LULC. Double 

bounce scattering was not much dominant over different regions so it was not used for identification of different 

classes. 



 

Figure 3.2: Krogager decomposition characterization (25/05/2010) 

 

Helix scattering was observed going flat over all classes so it was neglected for further classification. Sphere scattering 

and Diplane scattering were showed remarkable difference then Helix over different features so chosen for 

classification. 

 

  

  

Figure3.3: H/A/α decomposition  

 

Scatter diagram was made by considering Entropy, Alpha and Anisotropy values of different classes. Different zones 

located from this scatter diagram. It is clear from above the diagram (Entropy-Alpha) that closes forest and open forest 

falls in single zone. Dense urban and mixed urban belongs to same zone. Remaining all classes was in one zone. 

Otherwise, the diagram Anisotropy-Entropy shows that dense urban falls in single zone. Mixed urban and close forest 

belongs to same zone. 



Land use Land cover classification using Support vector machine algorithm 

Support vector machine algorithm 

The SVM is designed for binary-classification problems, assuming the data are linearly separable. Given the training 

data (xi , yi), i = 1, 2, …,l, xi  R
n
, yi  {+1, -1}, where R

n
 is the input space, xi is the sample vector and yi is the class 

label of xi, the separating hyperplane (, b) is a linear discriminating function that solves the optimization problem: 

  


,
),( b

m  

Subject to yi(<,xi> + b)  1, i =1, …,l, 

Where <.,.> indicates the inner product operation. The minimal distance between the samples and the separating 

hyperplane, i.e, the margin, is 1/||||. 

In order to relax the margin constraints for the non-linearly separable data, the slack variables are introduced into the 

optimization problem: 
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Subject to yi(<,xi> + b)  1- i , i = 1, 2, …,l, i  0. 

This leads to a soft margin SVM that is generally discussed and applied. The resulted classifier is called the 1-norm soft 

margin SVM, and C is the penatly parameter of error. The decision function of the classifier is 
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In practice, since the real data are often not linearly separable in the input space, the data can be mapped into a high 

dimensional feature space, in which the data are sparse and possibly more separable. The mapping is often not explicitly 

given. Instead, a kernel function is incorporated to simply the computation of the inner product value of the transformed 

data in the feature space. 

When using a function  : X F to map the data in to a high dimensional featurespace, the decision function of the 

classifier becomes 
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The mapping  is not given explicitly in most cases. Instead, a kernel function  )'(),()',( xxxxK   gives the 

inner product value of x and x’ in the feature space. Choosing a kernel function is therefore choosing a feature space 

and the decision function becomes 
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The generally used kernel functions are 

 linear:  ',)',( xxxxK ; 

 polynomial: 0,)',()',(   drxxxxK ; 

 radial basis function (RBF): 0,)',( ||'||    dxxexxK ; 

 sigmoid: )',(tan)',( rxxkxxK    



For certain parameters, the linear kernel is a special case of RBF kernels [17]. Also, the sigmoid kernel behaves like the 

RBF kernel [11]. When the data are linearly inseparable, a non-linear kernel that maps the data into the fearture space 

non-linearly can handle the data better than linear kernels. As the polynomial kernel requires more parameters to be 

chosen, the RBF kernel is a reasonable first choice of kernel function [8]. When using the RBF kernel, the parameters 

(d,) should be set properly. Generally d is set to be 2. Thus the kernel value is related to the Euclidean distance 

between the two samples,  is related to the kernel width. 

 

To apply SVM on multi-class classification problems, the problem can be divided into sub-problems which are binary-

classification problems. The often suggested implementations for SVM multi-class classification are the one-against-

rest method [13] and the one-against-one method [18]. For an n-class classification problem, the one-against-rest 

method constructs n SVM models with each one separating a single class with all the other classes, while the one-

against-one method constructs n (n-1) classifiers where each one classifies two classes only. Lin et al. [7] showed that 

the one-against-rest performs best and can be trained faster than the one-against-rest method. 

 

Land use land cover classification and accuracy assessment 

 

Support vector machine algorithm was used for identifying different classes. This algorithm used for all decompositions 

individually and parameters chosen carefully. Combined parameters also used as input for algorithm for obtaining better 

and accurate results. 

 

Accuracy assessment should be an important part of any classification. The reason for this is that it usually involves a 

lot of work in the field, which can be very expensive and time consuming. However, without any accuracy assessment 

we do not know how accurate our classification is. 

 

The accuracy of a classification is usually assessed by comparing the classification with some reference data that is 

believed to accurately reflect the true land cover. Sources of reference data include among other things ground truth, 

higher resolution satellite images, and maps derived from aerial photo interpretation. 

 

The accuracy assessment reflects really the difference between our classification and the reference data. 

 

The results of an accuracy assessment are usually summarized in a confusion matrix. 

 
Freeman decomposition classification 

Class 

Dense 

Urban 

Mixed 

Urban 

Close 

forest 

Open 

forest 

Scrub 

 
Cropland 

1 

Cropland 

2 

Grassland 

 
Dry river 

 
Total 

 
User Acc 

(%)  

Dense Urban 45  1  0  0  0  0  0  0  0  46  97.83  

Mixed Urban 0  0  0  0  0  0  0  0  0  0  0  

Close Forest 8  84  216  0  0  0  1  0  0  309  69.9  

Open Forest 1  30  3  132  44  5  66  3  46  330  40  

Scrub 0  0  0  0  0  0  0  0  0  0  0  

Crop land_1 0  0  0  0  10  156  91  48  88  393  39.69  

Cropland_2  0  0  0  0  0  0  0  0  0  0  0  

Grassland 0  0  0  0  0  0  0  0  0  0  0  

Dry river 0  0  0  0  0  0  0  0  0  0  0  

Total 54  115  219  132  54  161  158  51  134  1078   

Pro Acc (%)  83.33  0  98.63  100  0  96.89  0  0  0    

Overall Accuracy = 50.928%   

Kappa Coefficient = 0.421   

 



Krogager decomposition classification 

Class 

Dense 

Urban 

Mixed 

Urban 

Close 

forest 

Open 

forest 

Scrub 

 
Cropland 

1 

Cropland 

2 

Grassland 

 
Dry river 

 
Total 

 
User Acc 

(%)  

Dense Urban 50  0  0  0  0  0  0  0  0  50  100  

Mixed Urban 1  76  34  0  0  0  1  0  0  112  67.86  

Close Forest 3  39  185  0  0  0  0  0  0  227  81.5  

Open Forest 0  0  0  128  22  0  33  2  0  185  69.19  

Scrub 0  0  0  4  21  10  36  1  25  97  21.65  

Crop land_1 0  0  0  0  1  135  14  5  20  175  77.14  

Cropland_2  0  0  0  0  0  9  8  0  2  19  42.11  

Grassland 0  0  0  0  0  0  0  43  0  43  100  

Dry river 0  0  0  0  10  7  66  0  87  170  51.18  

Total 54  115  219  132  54  161  158  51  134  1078   

Pro Acc (%)  92.59  66.09  84.47  96.97  38.89  83.85  5.06  84.31  64.93  
  

Overall Accuracy = 67.996% 

Kappa Coefficient = 0.632 

 

 

 

H/A/ decomposition classification 

Class 

Dense 

Urban 

Mixed 

Urban 

Close 

forest 

Open 

forest 

Scrub 

 

Cropland 

1 

Cropland 

2 

Grassland 

 

Dry river 

 

Total 

 

User Acc 

(%)  

Dense Urban 43  7  0  0  0  0  0  0  0  50  86  

Mixed Urban 5  35  0  13  10  0  12  1  1  77  45.45  

Close Forest 0  6  169  16  0  0  5  5  0  201  84.08  

Open Forest 2  52  50  100  10  0  11  18  0  243  41.15  

Scrub 1  0  0  0  4  8  15  1  9  38  10.53  

Crop land_1 0  0  0  0  23  124  58  9  42  256  48.44  

Cropland_2  0  0  0  0  0  6  19  0  10  35  54.29  

Grassland 3  15  0  3  6  1  8  17  0  53  32.08  

Dry river 0  0  0  0  1  22  30  0  72  125  57.6  

Total 54  115  219  132  54  161  158  51  134  1078  
 

Pro Acc (%)  79.63  30.43  77.17  75.76  7.41  77.02  12.03  33.33  53.73  
  

Overall Accuracy = 54.082% 

Kappa Coefficient = 0.470 

 



Decomposition parameters selection classification 

Class 

Dense 

Urban 

Mixed 

Urban 

Close 

forest 

Open 

forest 

Scrub 

 
Cropland 

1 

Cropland 

2 

Grassland 

 
Dry river 

 
Total 

 
User Acc 

(%)  

Dense Urban 44  6  0  0  0  0  0  0  0  50  88  

Mixed Urban 8  92  18  0  0  0  1  0  0  119  77.31  

Close Forest 2  17  201  0  0  0  0  0  0  220  91.36  

Open Forest 0  0  0  130  19  0  22  14  1  186  69.89  

Scrub 0  0  0  0  18  17  43  0  22  100  18  

Crop land_1 0  0  0  0  3  126  27  9  13  178  70.79  

Cropland_2  0  0  0  0  5  4  29  0  15  53  54.72  

Grassland 0  0  0  2  3  0  3  28  0  36  77.78  

Dry river 0  0  0  0  6  14  33  0  83  136  61.03  

Total 54  115  219  132  54  161  158  51  134  1078  
 

Pro Acc (%)  81.48  80  91.78  98.48  33.33  78.26  18.35  54.9  61.94  
  

Overall Accuracy = 69.666% 

Kappa Coefficient = 0.651 

 

RESULTS 

  
a b 



  
c d 

Figure 4.1: Classification images 

a) Freeman decomposition; b) Krogager decomposition 

c) H/A/α decomposition; d) Decomposition parameters selection 

CONCLUSION 

In Freeman decomposition, single bounce, double bounce and volume scattering of the targets are separated: Dense 

urban, close forest, and crop land (before cut) show distinct scattering properties and can be separated well. But, other 

LU-LC classes could not be separated. 

 

In Krogager (SDH) decomposition, simple (sphere), double bounce (diplane), and multiple (helix) scattering of the 

targets may be separated.  Although, helix scattering is insignificant, well-pronounced simple and double scattering are 

able to separate majority of the LU-LC classes except scrubs and crop land (after cut).  

 

In Cloude-Pottier H/A/ decomposition, the nature of the scatterers are highlighted in addition to the scattering 

processes, namely, randomness of scattering and secondary scattering from the target: 

  

 Most of the classes represent predominant surface scattering except close forest, open forest and 

mixed urban (grass land – marginal case) with volume scattering.  

 Mixed urban, close forest, open forest and grass land with high entropy represent distributed target;  

 Dense urban having low entropy but high anisotropy is more close to pure target with equally 

important single bounce and double bounce scattering. 

 

InSAR coherence parameter was not found very useful for separating the LU-LC classes due to longer wavelength of L-

band PALSAR data.  

 

Based on the characterization of decomposed parameters, a set of parameters highlighting the scattering properties of 

the LU-LC classes were selected for classification.  



 

Field samples were collected for each of the LU-LC classes and signatures were generated for classification by Support 

Vector Machine Algorithm.  

 

Some of the individual LU-LC classes can be well classified using the parameters from individual polarimetric 

decomposition. However, all the LU-LC classes in totality can be separated well using selected decomposition 

parameters (odd bounce and volume scattering from Freeman decomposition, sphere and diplane from Krogager 

decomposition, and entropy, alpha and anisotropy from Cloude-Pottier decomposition) in combination with a 

classification accuracy of ~70% with a kappa coefficient 0.65.  

 

PolSAR decomposition parameter in combination enables to address Level-2 LU-LC Classification by SVM Algorithm 

which is otherwise difficult.  
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