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ABSTRACT: Predictive model for species distribution has been the core of ecological research since late 20th 
century with the development of statistical techniques and 3S tools, which not only can be applied to biodiversity 

conservation and management, but also enhance the ability of predicting species habitat distribution.  The sample 

points of Chinese guger-tree (Schima superba, CGT) in the Huisun study area were obtained by GPS, and GIS 

technique was used to overlay five environmental factors (including terrain factors and vegetation index derived 

from SPOT-5 satellite images).  Besides, we designed different ratios of background to target to evaluate different 

sampling designs for modeling individual species’ distribution.  The study applied MAXENT, DT and DA models 

to predict the suitable habitat of CGT in Huisun.  The results showed that the accuracy of DT was only slightly 

better than that of MAXENT and accuracies of the two models were much better than that of DA.  Implementation 

of model creation and validation was efficient, but it needed a cross-platform operation for modeling and mapping 
CGTs’ suitable habitats.  More importantly, MAXENT and DT can greatly reduce the area of field survey to 6% of 

the entire study area at the first stage, and thus saving both cost and labor.  However, increasing background 

samples was not always beneficial to model accuracy.  Especially when the ratio of background to target became 

too large, the species prediction did not correspond with real distribution, thereby reducing model accuracy.  This 

ratio falling within the range from one to five was good for species distribution modeling, but may not be optimal. 

Next studies will attempt to incorporate predictor variables with species spectral information extracted from high 

spatial, spectral resolution remotely sensed data into predictive models so that newly developed models can be 

applied at a larger spatial scale. 

KEY WORDS: Maximum Entropy (MAXENT), Sampling Design (SD), Decision Tree (DT), Discriminant 

Analysis (DA), Species Distribution Model. 

1. INTRODUCTION 

Species distribution modeling can provide a measure of a species’ occupancy potential in areas not covered by 
biological surveys and consequently is becoming an indispensable tool to conservation planning (Guisan and 

Zimmermann, 2000).  These models combine points of known occurrence with spatially continuous environmental 

layers to infer ecological requirements of a species, generally using a statistical algorithm to build model.  A variety of 

modeling methods reviews of some of these techniques can be found in Guisan and Zimmermann (2000), which offered 

complete suggestions.  We used maximum entropy (MAXENT), decision tree (DT) and discriminant analysis (DA) to 

build model since they have been successful in prediction in many studies (De’ath and Fabricius, 2000; Bourg et al., 

2005; Ordo´n˜ ez et al., 2005; Phillps et al., 2006; Elith et al., 2006; Phillps et al., 2008; Riordan et al., 2009). 

Despite the frequent use of distribution models, the number of occurrence data available for individual species 

from which to generate prediction is often quite limited.  Because some species are difficult to take sample or available 

data are not yet recorded in coordinates (Graham et al., 2004).  Hence, sampling issue has become an important aspect 

of ecological studies.  But only a limited number of papers examined how to set up an optimal sampling strategy for 
species habitat suitability modeling (Guisan and Hirzel, 2002).  Previous studies evaluated sample size effects on 

distribution model for only a few algorithms each and most did not test with data collected independently of the training 

data (Wisze et al., 2008).  Hence, the goal of this study improved sampling design deficiency, and we could understand 

how background sample size affected model prediction.  In addition we used independent data for model evaluation.  

Thus we could objectively evaluate the effects of sample size on the model performance. 

Species ecological characteristics have been shown to affect model performance (Elith et al., 2006).  Generally, 

models for species with broad geographic ranges and environmental tolerances tend to be less accurate than those for 

species with smaller geographic ranges and limited environmental tolerance (Elith et al., 2006).  According to species 

characteristic, the target species chosen for this study was Chinese guger trees (Schima superba, CGTs), which are 

widespread with elevation ranging from 300 to 2,300 m in central Taiwan, is one of the fine broad-leaf tree species and 

good for fitment.  CGTs have high water content and dense crown closure, and high dispersal ability; therefore, they 

have excellent fire resistance characteristics and can grow to form a fire line (Liu et al., 1994). 

In sum, the study consisted of the following five steps.  (1) In-situ CGT data were collected from the Tong-Feng 
watersheds by using a GPS.  (2) GIS technique was used to overlay five environmental factors, including four 

topographic factors and vegetation index derived from SPOT-5 satellite images.  (3) MAXENT, DT and DA were 

applied to build models for predicting the potential habitat of the species in the study area.  (4) Comparison of three 
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models using a common dataset.  (5) Creation of twelve sample sizes to evaluate the relative influence of both species 

ecology and sample size on model performance.  Further, we use Cohen’s (1960) kappa value to assess those sampling 

designs for modeling individual species’ distribution to determine what is the effect of sample size on the predictive 

ability of a model and if there exists a threshold in the ratio of background to target. 

2. STUDY AREA 

We chose the study area with rectangular shape, which encompasses the Huisun Forest Station and has the total 

area of 17,136 ha.  The Huisun Forest Station is in central Taiwan, situated within 24◦2 –́24◦5  ́ N latitude and 

121◦3 –́121◦7  ́E longitude (Figure 1).  The station is the property of National Chun-Hsing University, and study area 
ranges in elevation from 454 m to 3,419 m, and its climate is temperate and humid.  Hence, the study area has 

nourished many different plant species and is a representative forest in central Taiwan.  It comprises five watersheds, 

including two larger watersheds, Kuan-Dau at west and Tong-Feng at east.  At the present stage, all of the CGT 

samples were collected from the Tong-Feng watershed by using a GPS.  

 
Figure 1 Location map of the study area 

3. MATERIALS AND METHODS 

3.1 Data collection 

Digital elevation model (DEM) with grid size 5  5 m, orthophoto base maps (1:10,000), and nine-date SPOT 
images were collected.  In situ CGT data were also acquired by using a GPS linked with a laser range.  Two-date 

SPOT-5 images (07/10/2004 and 11/11/2005) were chosen because the two-date images (two out of nine) have the best 

quality with the least amount of clouds among the nine-date SPOT images. 

3.2 Data processing 

Slope and aspect data layers were generated from 5  5 m DEM by using ERDAS Imagine software module.  The 

ridges and valleys in the study area were used together with DEM to derive terrain position layer.  The main ridges and 
valleys over the study area were directly interpreted from the contour lines shown on the orthophoto base maps; these 

lines were then digitized to establish the data layer of main ridges and valleys by using ARC/INFO software for later 

use.  The data layer of main ridges and valleys in a vector format was converted into a new data layer in a raster format 

by ERDAS Imagine software, and then combined with DEM to generate terrain position layer (Skidmore, 1990).  

Vegetation indices were derived from the two-date SPOT-5 images, one in autumn, the other in summer, by using 

Spatial Modeler of ERDAS Imagine.  CGT samples obtained by a GPS were corrected by using post-processed 

differential correction and converted into ArcView shapefile format for later use. 

3.3 Database building and sampling 

The GIS database used in the study was constructed by using ERDAS Imagine software module Layer Stack to 
overlay elevation, slope, aspect, terrain position, vegetation index, and CGT data layers.  All of these layers were 

rectified and projected onto TWD67 (Taiwan Datum) Transverse Mercator map projection.  The CGT sample layer 

was overlaid with five data layers, and those pixels of the five layers lying at the same position with tree sample pixels 

were clipped out.  Besides, In-situ 122 CGT samples were obtained from the Tong-Feng watershed and two-thirds of 

Tong-Feng samples (82) were used as training data for base model development, and the remaining, one-third of 

Tong-Feng samples (40), was used as test data for model validation. 

We also tested several sampling designs for modeling individual species’ distribution to determine: (1) what is the 
effect of sample size on the predictive ability of a model and (2) if there exists a threshold in the ratio of background to 

target.  And then we created twelve sampling approaches were set up with a fixed target size and with different 

background size.  The training background sets of S (100, 500, 1000, 2000, 3000…and 10000 sample points) were 

drawn completely at random across the study area (sampling was computed on 3 replicates).  Composed of twelve 
sampling sample to test different background to target ratio for affecting species’ distribution, which the background to 

target ratio are: 1, 6, 12, 24, 37, 49, 61, 73, 85, 98, 110, 122 respectively (see Table 3).  Owing to the need of 



 

 

validation, the test background sets of S (50, 250, 500, 1000, 1500… and 5000 sample points) to keep similar ratio.  

MAXENT, DT and DA models were developed based on these sampling designs and used to compare the effect of 

different background sample size on the accuracy of predictive models. 

3.4 Model development 

The predictive models for predicting potential habitat of CGT were created using three approaches: (1) Maximum 
entropy, (2) Decision tree and (3) Discriminant analysis.   

3.4.1 Maximum entropy 

Maximum entropy (MAXENT) is to find the probability distribution of maximum entropy–that which is closet to 

uniform–subject to constraints imposed by the information available regarding the observed distribution of the species 

and environmental conditions across the study area.  MAXENT represents features as binary functions known as 

contextual predicates in the form (1): 
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where cp is the contextual predicate that maps a pair of outcome y and context x to {true; false} (Le, 2004).  The 

requirement for the model given such feature constraints are that expected value of f according to our model is equal the 

expected value of f with respect to the empirical distribution such as formula (2): 
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is an empirical distribution and p characterizes the model. These requirements, however, do not generally 
specify a unique model.  A set of models will satisfy the given constraints and among these there will be one with the 

largest entropy, which according to MAXENT principle should be chosen as optimal.  The entropy of a model, H(p), is 

calculated using the following formula (3): 
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intuitively, models with high entropy are more uniform and therefore they assume less about the world.  The maximum 

entropy model can be interpreted as the model that assumes only the knowledge that is represented by the features 

derived from the training data and nothing else (Le, 2004; Phillips et al., 2006; Phillips et al., 2008).  

3.4.2 Decision tree 

Decision Tree (DT) is machine learning and data mining technique, we used classification and regression tree 

(CART) algorithms in this study.  Classification tree builds the rule by recursive binary partitioning into regions that 

are increasingly homogeneous with respect to the class variable.  The homogeneous regions are called nodes.  At 

each step in fitting a classification tree, an optimization is carried out to select a node, a predictor variable, and a cut-off 

or group of codes that result in the most homogenous subgroups for the data, as measured by the Gini index (Breiman et 
al., 1984).  This criterion could set the optimum tree as a trade-off between goodness of fit on training data and size of 

the tree.  Such a classification tree is said to be full grown, and the final regions are called terminal node.  Terminal 

nodes are assigned a final outcome based on group membership of the majority of observations (De’ath and Fabricius, 

2000).  The lower branches of a fully grown classification tree model sampling error, so algorithms for pruning the 

lower branches on the basis of split-sample validation error have been developed (Breiman et al., 1984). 

3.4.3 Discriminant analysis 

Discriminant analysis (DA) is a technique, which discriminates among k classes (objects) based on a set of 
independent or predictor variables.  The objectives of DA are to (1) find linear composites of n independent variables 

which maximize among-groups to within-groups variability; (2) test if the group centroids of the k dependent classes are 

different; (3) determine which of the n independent variables contribute significantly to class discrimination; and (4) 

assign unclassified or ―new‖ observations to one of k classes (Johnson and Wichern, 2007).  The variates for a 

discriminant analysis, also known as the discriminant function takes the following formula (4): 

                    Z j k = a + W1 X1 k + W2 X 2 k + . . . + W n X n k                 (4) 

Where Z j k = discriminant Z score of discriminant; function j for object (class) k; a = intercept; Wi = discriminant weight 

for independent variable i; X i k = independent variable i object (class) k. 

3.5 Model validation 

Evaluation methods of the different samplings, we used split-sample validation.  The first one (training dataset) is 
used to build model; the other one (test dataset) is used to validat the model.  For each model, predict the response of 

the remaining data, and calculate the error matrix (De’ath and Fabricius, 2000).  Some common statistical 

measurements include producer’s accuracy (omission error), user’s accuracy (commission error), overall accuracy and 

kappa value (Jensen, 2005; Sim and Wright, 2005; Lillesand et al., 2008). 

(1) 

(2) 

(3) 



 

 

4. RESULTS AND DISCUSSION  

Owing to very large amount of calculation, it was necessary to reduce the dimension of a model to improve its 
building efficiency.  All three modules can evaluate the relative importance of predictor variables in the models for 

predicting the potential habitat of CGTs.  The evaluation showed that elevation, slope, and terrain position were the 

variables having the first three highest relative importance.  Hence, we used these three predictor variables to build 

predictive models.  Finally, in order to get more reliable results, the study only used ―test sample‖ to assess the 

accuracy of model.  

As shown table1, both the overall accuracy and kappa values with DT (91%, 0.63) was only slightly better than 
that of MAXENT (90%, 0.61) and accuracies of the two models were much better than that of DA (86%, 0.56), 

respectively.  According to the PA and UA with three models in the test case, for both MAXENT and DT, the PA 

percents of non-habitat (91%, 96%) were close to the UA percents of non-habitat (97%, 96%), whereas the PA percents 

of habitat (82%, 62%) were slightly greater than the UA percents of habitat (56%, 62%).  This indicated that the model 

modeling result meet with real condition.  As shown in the results of DA, the PA percents of non-habitat in the test 

case (83%) were fewer than the UA percents of non-habitat (99%), and the PA percents of habitat in the test case (94%) 

were obviously greater than the UA percents of habitat (36%), thereby raising the PA percent of habitat by trading off 

the PA percent of non-habitat.  It made model relaxed restriction in habitat prediction and mitigated omission problem, 

but caused non-habitat to be erroneously assigned to habitat area (commission error).  This is a major shortcoming of 
DA, thereby decreasing non-habitat accuracy and overall accuracy.  Table 2 shows the distribution statistics of CGT 

potential habitat predicted by three models.  Clearly, three models greatly reduced the area of field survey to less than 

6% of the entire study area at the first stage, and thus saving both cost and labor.   

Table 1 The accuracies of three models for predicting the potential habitat of CGTs 

Model OA (%) Kappa Habitat PA (%) Habitat UA (%) Non-Habitat PA (%) Non-Habitat UA (%) 

MAXENT 90 0.61 82 56 91 97 

DT 91 0.63 62 62 96 96 

DA 86 0.56 94 36 83 99 
* The results are computed on 3 replications; OA = overall accuracy; PA = producer’s accuracy; UA = user’s accuracy. 

Table 2 Distribution statistics of CGT potential habitat predicted by using three approaches 

Class 
MAXENT DT DA 

Area (ha) % Area (ha) % Area (ha) % 

Habitat 874.11 5 1,046.39 6 1,058.15 6 

Non-habitat 16,261.89 95 16,0.89.61 94 16,077.85 94 

Sum 17,136.00 100 17,136.00 100 17,136.00 100 

Table 3 shows the comparison of the predictive accuracy resulting from the different sample size.  On the whole, 
results showed that the kappa values of all models declined largely as background sample size (BSZ) rose from 250 to 

500 (see Figure 2a), which means BSZ obviously affected models performance.  DT declined slowly with the increase 

in BSZ, whereas MAXENT and DA dropped sharply with the increase in BSZ.  DT had better reliability to resist 

change in B/T ratio and tease apart complex relationship.  Hence, model performance with DT was better than 

MAXENT and DA, and the effect of BSZ decreased the accuracy of model predictions of habitat suitability. 

Table 3 Comparison of the prediction accuracy resulting from different background sample size 

BSZ 
B/T 

ratio 

MAXENT kappa DT kappa DA kappa MAXENT OA (%) DT OA (%) DA OA (%) 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

50 1 0.650  0.000  0.743  0.031  0.710  0.035  84  0.000  87  1.735  85 1.963 

250 6 0.610  0.030  0.633  0.055  0.563  0.046  90  0.577  91  1.514  86 2.021 
500 13 0.443  0.031  0.597  0.047  0.417  0.035  90  1.000  95  0.557  85 1.504 

1000 25 0.303  0.035  0.520  0.046  0.227  0.012  89  1.000  97  0.252  81 1.015 

1500 38 0.243  0.012  0.457  0.074  0.173  0.015  89  0.577  98  0.473  82 2.060 

2000 50 0.197  0.012  0.477  0.121  0.143  0.006  89  0.000  99  0.200  83 0.656 

2500 63 0.170  0.010  0.437  0.076  0.107  0.006  89  0.577  99  0.200  82 0.586 

3000 75 0.143  0.015  0.427  0.080  0.093  0.006  89  1.000  99  0.100  83 0.850 

3500 88 0.130  0.000  0.320  0.201  0.083  0.006  89  0.000  99  0.100  83 0.153 

4000 100 0.117  0.015  0.300  0.078  0.070  0.000  89  1.000  99  0.000  82 0.289 

4500 113 0.107  0.006  0.277  0.087  0.067  0.006  89  0.577  99  0.058  83 0.577 

5000 125 0.100  0.010  0.107  0.095  0.060  0.000  89  0.577  99  0.058  83 0.551 
*Means and S. D. are computed on 3 replications; BSZ = background sample size; B/T ratio = background to target ratio; OA = overall accuracy. 

Table 4 summarizes producer’s and user’s accuracy in different sample size.  Results showed that non-habitat 
(background) of three models had higher producer’s accuracy and were more representative as the background to target 



 

 

ratio increased.  In other words, three models traded off the accuracy of habitat (target) to improve non-habitat 

prediction.  This reduced omission errors in the background prediction, but increased omission error in the target 

prediction.  Thus it was hard to balance commission and omission errors between target and background distribution. 

 

 

 

 

 

 

 

 

Figure 2 (a) Comparison of kappa values of three models (± standard deviation);  

(b) Comparison of overall accuracy of three models (± standard deviation) 

Table 4 Comparison of the producer’s and user’s accuracy in different sample size 

BSZ 
B/T 

ratio 

MAXENT 

Habitat 

MAXENT 

Non-Habitat 
DT Habitat DT Non-Habitat DA Habitat DA Non-Habitat 

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

50 1 72  85  92  83  96 79 81 96 97 76 76 97 

250 6 82  56  91  97  62 62 96 96 94 36 83 99 

500 13 85  34  90  99  40 70 99 98 96 32 84 100 

1000 25 84  21  89  99  54 53 98 98 97 16 81 100 

1500 38 87  16  89  100  43 54 99 99 96 12 82 100 

2000 50 90  13  89  100  39 67 100 99 93 10 83 100 

2500 63 87  11  89  100  40 50 99 99 93 7 82 100 

3000 75 87  9  89  100  44 46 100 99 93 6 83 100 

3500 88 87  8  89  100  25 58 100 99 93 5 82 100 

4000 100 92  7  89  100  21 58 100 99 93 5 82 100 

4500 113 87  7  89  100  18 68 100 99 93 4 82 100 

5000 125 90  6  89  100  6 52 100 99 92 4 83 100 
*PA and UA are computed on 3 replications; PA = producer’s accuracy; UA = user’s accuracy;  

BSZ = background sample size; B/T ratio = background to target ratio. 

This interesting finding inspired research team to further understand if there exists a threshold in the ratio of 

background to target.  Table 5 indicated how the model performance in different sample size.  The results showed that 
three models have different model performance at the same ratio.  As the ratio was larger than 25, DA model had a 

poor agreement but MAXENT and DT kept moderate agreement.  This means MAXENT and DT had a better 

reliability than DA as the ratio changed.  The ratio of background to target falling within the range from one to six is 

good for species distribution modeling, but may not be optimal.  There may have a critical ratio with the model.  

Especially when the ratio of background to target became too large, the species prediction did not correspond with real 

distribution, thereby reducing model accuracy.  This indicates that more background samples are not always better for 

model accuracy. 

Table 5 Model performance in different sample sizes 

Strength of agreement Kappa value MAXENT B/T ratio DT B/T ratio DA B/T ratio 

Very good 0.8–1.0 — — — 

Good 0.6–0.8 < 6 < 6 < 1 

Moderate 0.4–0.6 6 < x < 13 6 < x < 75 1 < x <13 

Fair 0.2–0.4 13 < x < 38 75 < x < 113 13 < x < 25 

Poor 0.0–0.2 x > 38 x > 113 x > 25 
* B/T ratio = background to target ratio. 

5. CONCLUSIONS 

The study developed MAXENT, DT and DA models that related the known CGT sites to habitat characteristics 

(topographic variables) and spatially extrapolated CGT’s potential sites in the study area.  DT was slightly better than 

MAXENT, and the two models were much better than DA.  Implementation of model creation and validation was 

efficient, but it needed a cross-platform operation for modeling and mapping CGTs’ suitable habitats.  Because 

MAXENT and DT greatly reduced the area of field survey to fewer than 6% of the entire study area, they were better 

suited for predicting the tree’s potential habitat. 

(a) (b) 



 

 

Besides, we also evaluate effects of sample size on the performance of species distribution modeling.  Preliminary 
results indicated that DT had a better stability than MAXENT and DA as the ratio changed.  Furthermore, the increase 

in background samples was not always good for model accuracy.  The species prediction did not correspond with real 

distribution, thereby reducing model accuracy.  Again, The ratio of background to target falling within the range from 

one to six is good for species distribution modeling, but may not be optimal.  This point will need to be confirmed in a 

follow-up study. 

Sampling is an expensive, time-consuming task, our results should encourage further, though cautious, use of 

predictions based on background/target sample ratio.  Further study will be needed to evaluate the effect of the 

different target sample size, and design different spatial scales for model performance.  More importantly, we shall 

attempt to use predictor variables involving species spectral information extracted from high spatial, spectral resolution 

remotely sensed data, especially hyperspectral image data, for building a model so that it can improve model prediction.
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