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ABSTRACT: The study used atmospheric moisture and rainfall history, combined with maximum wind speed, to 

improve the estimation of the rainfall caused by hurricanes. GIS, Kriging method and multi-variable regression 

analysis were primarily employed. The results are greatly instructive to both forecast the rainfall and protect people 

away from the potential flooding areas. 

 

1.  INTRODUCTION 

 

Hurricanes may bring rainfall that can lead to flooding (Tootle et al 2005), which leads to the most death associated 

with hurricanes (Elsberry 2002), so the accurate rainfall forecasts remain a critical problem for reducing the 

damages brought by hurricanes. In the Rainfall Climatology and Persistence model (R-CLIPER) utilized 

operationally in the Atlantic Ocean basin by the National Hurricane Center (NHC) for hurricane rainfall forecasts, 

the storm intensity is considered as the major factor (Jiang et al 2008a). After that, the effects of vertical wind shear 

and topography are taken into account and combined with the effects modeled in R-CLIPER in a new model called 

the Parametric Hurricane Rainfall Model (PHRaM) (Lonfat et al 2007). The maximum accumulated rainfall over 

land, as the function of satellite-derived rainfall potential over ocean prior to landfall, storm size and translation 

speed, has also been studied and the high correlation has been found (Jiang et al 2008b). 

 

In addition to the storm inherent features, environmental parameters are also crucial to affect the rainfall, such as 

moisture budget (Carr and Bosart 1978; DiMego and Bosart 1982), total precipitable water (Rodgers and Pierce 

1995, in Jiang et al 2008a), horizontal moisture convergence (Jiang et al 2008c and 2008d) and ocean surface flux 

(Jiang et al 2008a). However, few statistical relationships between rainfall and environmental moisture during 

hurricanes have been documented (Jiang et al 2008a). It has also been found that (Jiang et al 2008a) before the 

landfall of hurricanes, a stronger statistical relationship existed between accumulated rainfall and maximum wind 

intensity than after landfall, that is, the correlation between rainfall and maximum wind over ocean (pre-landfall) 

was stronger than over land (post-landfall) during hurricanes. The similar stronger correlations have also been 

found between the same dependent variable (accumulated rainfall) and other independent variables including 

precipitable water (PWAT), horizontal moisture convergence (HMC) and ocean surface flux (OSF). The 

environmental moisture data, in the study above, was interpolated into 3-hourly from 12-hourly temporal resolution 

with 111×111 km
2
 spatial resolution. Also, It has been documented that there was a great improvement for 

describing the accumulated rainfall after combining PWAT, HMC and OSF with maximum wind speed; however, 

there were no pronounced distinctions between only adding PWAT and adding all of three, which would make the 

prediction more practical and greatly reduce the prediction error because HMC and OSF were model-derived 

parameters instead of being easily from satellite-derived observations. 

 

Based on author’s current literature review, no quantitative relationship between accumulated rainfall and 

atmospheric moisture has been studied for short-term forecast purposes. This study attempted to fill this gap by 1) 

using time lags to adjust the correlations between moisture and rainfall for short-term forecast purposes and 2) 

utilizing the moisture and rainfall data with higher temporal resolution to aid the maximum wind speed predicting 

the rainfall brought by hurricanes. 

 

Precipitable Water (PWAT) is the depth of liquid water that would result after precipitating all of the water vapor in 

a vertical column over a given location. In this study it was employed to represent the atmospheric moisture. AR 

stands for the accumulated rainfall on the ground. The maximum wind speed is the total velocity gauged at the 

landfall of hurricanes, which is synthesized by the speed of moving forward and spinning within the storm. 
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Spatial statistics and Geographic Information System (GIS), while different, rely on each other in important ways. 

GIS software can be used to create covariates for inclusion in statistical models and to visualize the output from 

statistical models. Spatial statistics provides modeling and inference techniques for drawing conclusions from 

geographical data and provides a group of methods for spatial smoothing and accounting for non-spatial covariates 

in estimating spatial surfaces. In this study, we focused our attention on predicting the average and total 

accumulated rainfall because they are more stable and easier to predict than maximum and minimum ones. The 

latter two need accurate locations where they may occur to make themselves more practical. 

 

2.  DATA 

 

2.1 Study Cases & Storm Records 

 

In this study we examined three hurricanes making their landfalls over the southeastern continent of U.S. in 

September 2004, named Frances, Ivan and Jeanne. Frances made its first landfall over the southern end of 

Hutchinson Island near Stuart in the state of Florida at about 0430 UTC on 5
th

 September as a Category 2 hurricane 

(90 knot), according to the Saffir-Simpson Intensity Scale; then it moved northwestward and emerged into the 

northeastern Gulf of Mexico near early on 6
th

, followed by the second landfall near the mouth of the Aucilla River 

in the Florida Big Bend region at about 1800 UTC on 6
th 

at a wind speed of 90 knot. Ivan made the first landfall as 

a Category 3 hurricane (105 knot) at approximately 0650 UTC on 16
th

 over the west of Gulf Shores in Alabama 

state, near the border between southern Alabama and western Florida; after landfall, it kept moving towards 

northeast across Alabama, along the border of Tennessee and North Carolina, then across Virginia and went into 

Atlantic from Delmarva peninsula in Virginia where it became an extra-tropical low around 1800 UTC on 18
th

; 

over the next 3 days, it moved south and southwestward over Atlantic and made its second landfall over Fort 

Lauderdale in Florida from Atlantic near the morning of 21
st
 at a rate of 25 knot and eventually emerged over the 

southeastern Gulf of Mexico later that afternoon. Jeanne, which has similar features as Frances, e.g. landfall 

location (Hutchinson Island near Stuart, Florida), minimum central pressures (960 mb for Frances and 950 mb for 

Jeanne) and tracks of movement (crossing the coastline northwestward at about 280°), made its only landfall near 

0400 UTC on 26
th

 September at about 105 knot, and moved across central Florida, Tampa and central Georgia over 

the next 36 hours, then continued moving northwards. We derived the spatial locations of three storm centers and 

the maximum wind speed in 6-hourly increments from HURDAT (NHC 2006) and utilized the extended best track 

data (Demuth et al 2006) to estimate storm size. 

 

2.2 Rainfall & Moisture Data 

 

In this study, what we did was for future prediction instead of real-time forecast, so we selected 3-hourly Tropical 

Rainfall Measuring Mission (TRMM) and Other Rainfall Estimate (3B42 V6) with 32.2×32.1 km
2
 spatial 

resolution as the accumulated rainfall estimates instead of Real-time TRMM product on which several 

simplifications were imposed for realizing real-time effect. It is a combined product based on two different sets of 

sensors: Microwave and IR (Huffman et al. 2007, in Jiang et al 2008a). In the current TRMM 3B42 system, passive 

microwave observations from TMI, AMSR-E and SSM/I are converted to precipitation estimates with sensor-

specific versions of the Goddard Profiling Algorithm (GPROF) (Kummerow et al 1996, in Jiang et al 2008a). For 

the measurements over land and ocean, GPROF selected different channels and strategies, which leads to about 

17% positive biases over land, compared with rain gauge data, and 9% negative biases over ocean (Jiang et al 

2008a). We derived precipitable water (PWAT) data in 3-hourly increments with 21.4×27.8 km
2
 spatial resolution 

from the North American Regional Reanalysis (NARR) dataset, which provides higher temporal and spatial 

resolution than the ones calculated from the Navy Operational Global Atmospheric Prediction System (NOGAPS) 

analysis with 12-hourly temporal resolution and 111×111 km
2
 spatial resolution. 

 

3.  METHODS 

 

3.1 Kriging 

 

Kriging is a group of geostatistical techniques to interpolate a certain kind of values at unobserved locations base 

on their observed counterparts at nearby locations, which could minimize the estimation error and produce a 

continuous and smooth surface from some discrete points. A typical geostatistical routine might interpolate the 

value for a given location using several nearest neighbor values weighted by distance and the degree of 

autocorrelation present for that distance. The quality of interpolated values depends on the spatial continuity of the 

phenomenon and the distribution of separate known points. Both PWAT and AR dataset we used in this study 

contain evenly-distributed gridded data; in addition, both atmospheric moisture and precipitation are typical 

continuous phenomenon. Therefore, Kriging is a good choice to interpolate these two kinds of data. We selected 

Ordinary Kriging and Spherical semivariogram model in this study (Figure 2). 

http://en.wikipedia.org/wiki/Geostatistics
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 Figure 1  Tracks of movement of three hurricanes         Figure 2  Semivariogram with Spherical model 

 

3.2 Regression Analysis 

 

Regression analysis is a major tool to make a forecast based on past and current trends and historical empirical 

evidence. It is used to model the relationship between a dependent variable and one or more independent variables 

in order to assess the extent to which a dependent variable are affected by one explanatory variable (Bivariate) or a 

combination of independent variables (Multivariate). Stepwise regression employs a screening procedure to 

determine which explanatory variables are retained and dropped from the model based on their explanatory power 

by setting a certain threshold of Probability or F-statistic. It is a sequential method for adding and removing 

regressors to determine a final regression model which provides the best possible fit. There are four types of 

stepwise procedures: Forward Stepwise Regression (FSR), Backward Stepwise Regression (BSR), General 

Stepwise Regression (GSR) and Min. MSE Stepwise. Here we selected FSR, which starts with a full-blown model 

including all k regressors we are interested in. First, it will find the explanatory variable that explains the greatest 

amount of variation in the dependent variable; if its p-value is lower than the threshold we set up, it will be added 

into the model. Then, find the variable that provides the secondary greatest amount of explanatory power to the 

model based on the unexplained variation from the model and check the corresponding p-value. Repeat the process 

until no variables in the pool are qualified. 

 

F-ratio, recorded as the ratio of explained variation to unexplained variation, is often used to assess the explanatory 

power provided by the independent variables. The p-value, corresponding to a computed F-ratio, tells us the 

percentage of the confidence level up to which we could reject the null hypothesis. In addition to F-ratio, we also 

employed adjusted R
2
 (adjusted coefficient of determination) to assess the overall strength of our regression models 

which supersedes its unadjusted version R
2
 (coefficient of determination) which might increase just due to chance. 

Maximizing Adjusted R
2
, which will keep approaching 1.0 with F-ratio increasing, is one goal of improving 

regression models and it is easier to assess than F-ratio. 

 

The assumption of normality of error plays a critical role in assessing the structure and significance of our 

regression models because Non-normality of error may inflate the standard error, which leads us to fail to reject 

some null hypothesis that should be rejected. Therefore, we used a combination of Kolmogorov-Smirnov, Shapiro-

Wilk and Anderson-Darling test to test the normality of error. Kolmogorov-Smirnov test is often used for testing 

whether the current group of samples comes from a completely specified continuous distribution; Shapiro-Wilk test 

is popular because it is valid for samples the number of which ranges from 3 to 5000; Anderson-Darling test is 

useful especially when the number of samples is less than 25 or 40 because a large sample size may reject the 

assumption of normality with only slight imperfections, but industrial data with sample sizes of 200 and more have 

passed the Anderson–Darling test, so here we used it to assist other tests with caution. 

 

3.3 Radius Selection 

 

The forecast wind radii are the farthest extent from the center of 34-, 50-, and 64-knot winds in each quadrant of a 

tropical cyclone expected for each forecast period. Although not an exact representation of the expected wind field, 

they are intended to show the expected size of the storms and the areas potentially affected by sustained winds of 

34 knot (tropical storm force), 50 knot and 64 knot (hurricane force) from a tropical cyclone. Therefore, not all 

locations within the forecast wind radii will necessarily experience the indicated wind speeds. About 230 km is 

often regarded as the average radius of the rain fields at landfall (Matyas 2010). Based on the average radius and 

forecast wind radii of three hurricanes at landfall (Table 1), we took 111 km as the radius of inner cores of 

hurricanes and 333 km as the environment around the storm centers, for the purpose of observing if significant 

correlations exist between accumulated rainfall and precipitable water within these two levels of radius. 



Hurricane 34-knot (km) 50-knot (km) 64-knot (km) 

Frances first landfall 231.5 - 324.1 138.9 - 231.5 74.08 - 138.9 

Frances second landfall 0 - 166.68 0 - 46.3 0 

Ivan first landfall 138.9 - 463 74.08 – 231.5 46.3 – 83.34 

Ivan second landfall 0 0 0 

Jeanne landfall 231.5 – 333.36 111.12 – 185.2 74.08 – 111.12 

Table 1  Radii of three hurricanes, each pair of values representing the range (minimum - maximum) of 

forecast wind radii in four quadrants at a given wind speed 

 

3.4 Variable Selection 

 

The precipitable water in the air needs a couple of hours or days to drop onto the ground, so to consider time lags 

between PWAT and AR data is crucial for forecast purposes. It has been found that although better than the results 

in which the maximum wind speed was mainly used to predict the rainfall, the 12-h time lag provided almost the 

same correlation coefficients for land (0.60), ocean (0.64) and all conditions (0.66) as their counterparts without 

considering any time lag, and the 24-h time lag even provided slightly smaller ones for land (0.56), ocean (0.60) 

and all conditions (0.63) (Jiang et al 2008a). In this study, we regarded the buffer zones around all the storm centers 

occurring within 72 hours centered at landfall time as our study areas. The records of storm centers are available 

every six hours (0000, 0600, 1200 and 1800 UTC), and each center corresponds to both an inner area and an outer 

environment area around it; therefore, 13 storm centers for each landfall of each hurricane should, theoretically, be 

selected, but as some time points around two times of Frances’ landfall are overlapping, so 19 centers for Frances, 

26 for Ivan and 13 for Jeanne, 19 centers of Frances were selected, that is, 58 inner areas and 58 outer ones totally 

for our study. Within each study area, in addition to the PWAT and AR at the time when landfall occurred, we also 

calculated the PWAT and AR values 3 and 6 hours prior to landfall, and the ones 3 and 6 hours after landfall, 

respectively. For clearer explanations, we defined all the variables for the storm center at a given time in Table 2. 

 

Variable Definition 

B6_PWAT(AR)_AVG(SUM) The average(total) PWAT(AR) within a circle of 111 km radius centered at the 

location at which the storm center would arrive after 6 hours 

B3_PWAT(AR)_AVG(SUM) The average(total) PWAT(AR) within a circle of 111 km radius centered at the 

location at which the storm center would arrive after 3 hours 

PWAT(AR)_AVG(SUM) The average(total) PWAT(AR) within a circle of 111 km radius centered at the 

storm center at landfall 

A3_PWAT(AR)_AVG(SUM) The average(total) PWAT(AR) within a circle of 111 km radius centered at the 

location where the storm center had left for 3 hours 

A6_PWAT(AR)_AVG(SUM) The average(total) PWAT(AR) within a circle of 111 km radius centered at the 

location where the storm center had left for 6 hours 

PWAT(AR)_AVG(SUM)3 The average(total) PWAT(AR) within a circle of 333 km radius centered at the 

storm center at landfall 

B6(B3/A3/A6)_PWAT(AR)_ 

AVG(SUM)3 

(The same meanings as above, just the radius was changed from 111 to 333 km) 

Table 2  Definitions of all the variables involved in the regression analysis 

 

4 Results 

 

4.1 Maximum wind speed 

 

At first, we only used maximum wind speed at landfall to explain the rainfall at landfall within both inner and outer 

areas and predict the rainfall brought by hurricanes within the same two areas after 3 hours and 6 hours, 

respectively. The results were shown in Table 3(Sp. stands for the number of samples, the same in Table 4 and 5). 

 

4.2 Maximum wind speed, PWAT and Rainfall history 

 
We used precipitable water and rainfall history data to aid the maximum wind speed to see if there were some 

improvements to explain the rainfall brought by hurricanes. The results were shown in Table 4 and Table 5. 
 

5.  CONCLUSIONS 

 

In Table 3, all of the coefficients are positive, which means the higher the maximum wind speed is, the more 

rainfall the hurricane could bring both at and after the landfall. In the inner area, in addition to explain the rainfall at 



the same time, the maximum wind speed of hurricanes at landfall also provided good predictions, to some extent, 

for the average and total rainfall at the locations where it left 3 to 6 hours ago. However, by the comparison of 

adjusted R
2
, the introduction of precipitable water and rainfall history data did improve the ability of predicting. All 

of our dependent variables were better explained (AR_Avg: 0.857 to 0.909; A3_AR_Avg: 0.799 to 0.897; 

A3_AR_Sum: 0.820 to 0.879; A6_AR_Avg: 0.772 to 0.831; A6_AR_Sum: 0.856 to 0.930) except the total amount 

of rainfall at landfall (AR_Sum: 0.850 to 0.787). 

 

It was proved that, at the time of landfall, the average rainfall in the inner area of the storm center was influenced 

by both the maximum wind speed at that time and the atmospheric moisture and rainfall before 3 hours; it was a 

little hard to know the total rainfall at landfall as the measurable variables before the landfall did not improve its 

estimation. After 3 hours, away from the landfall, both the average and total rainfall within the same area were 

better estimated by the total rainfall at landfall, the true amount of which, although hard to predict before the 

landfall, could be gauged by satellite in the real time of landfall and was hence greatly helpful. After another 3 

hours passed, it was still the maximum wind speed at landfall combined with the atmospheric moisture and rainfall 

3 hours ago that estimated the average rainfall better than only maximum wind speed. The total rainfall, shown in 

the model, was greatly influenced by the atmospheric moisture and maximum wind speed at the time of landfall, 

that is, 6 hours ago, the underlying physical correlation of which needed further meteorological study, but we 

could, at least, see the importance of the atmospheric moisture. 

 

When the hurricane makes landfall, people living there can be effectively evacuated or protected based on the 

prediction of the storm centers in advance, which is becoming more and more accurate; however, with the center of 

the hurricane moving away and people starting to go back, the real danger caused by following rainfall is 

approaching. The results are of great importance to the people and regions that will come across the hurricanes in 

future. 

 
Variable Constant included Sp. R

2
 F-ratio K-S test S-W test A-D test 

AR_Avg YES 56 0.783 199.150 0.123 0.410 >0.15 

 NO 57 0.857 336.550 0.004 0.002 <0.01 
AR_Sum YES 57 0.756 174.103 0.215 0.610 >0.15 

 NO 58 0.850 323.809 0.002 0.000 <0.01 
A3_AR_Avg YES 58 0.693 129.819 0.001 0.003 <0.01 

 NO 58 0.799 227.286 0.000 0.000 <0.01 
A3_AR_Sum YES 54 0.699 123.913 0.018 0.005 <0.01 

 NO 54 0.820 240.966 0.002 0.000 <0.01 
A6_AR_Avg YES 52 0.730 139.167 0.029 0.011 <0.01 

 NO 53 0.772 175.867 0.000 0.000 <0.01 
A6_AR_Sum YES 47 0.856 274.873 0.002 0.027 <0.01 

 NO 54 0.768 175.517 0.000 0.000 <0.01 

Table 3  Estimations based on only wind speed (Bold showed the best) (Confidence level = 95%) 
 
Dependent Independent variable(s) Sp. R

2
 F-ratio K-S S-W A-D 

 

 

 

 

AR_Avg 

Constant , B3_AR_Avg , KNOT 57 0.812 122.266 0.001 0.022 <0.01 

B3_PWAT_Avg , B3_AR_Avg , KNOT 57 0.909 186.098 0.001 0.041 <0.01 
Constant , B3_AR_Sum , KNOT 56 0.804 113.978 0.001 0.009 <0.01 

B3_PWAT_Sum , B3_AR_Sum , KNOT 56 0.905 174.516 0.003 0.018 <0.01 
Constant , KNOT 56 0.783 199.15 0.123 0.41 >0.15 

B3_PWAT_Avg3 , KNOT 56 0.895 234.954 0.542 0.637 >0.15 

B6_PWAT_Avg , KNOT 56 0.897 240.722 0.417 0.649 >0.15 

B6_PWAT_Sum3 , KNOT 56 0.897 239.812 0.14 0.365 >0.15 

 

 

 

 

AR_Sum 

Constant , B3_AR_Avg , KNOT 57 0.775 97.606 0.006 0.114 0.031 

B3_PWAT_Avg , B3_AR_Avg , KNOT 57 0.895 158.937 0.041 0.166 0.062 

Constant , B3_AR_Sum , KNOT 57 0.787 104.2 0.004 0.099 <0.01 
B3_PWAT_Sum , B3_AR_Sum , KNOT 57 0.901 170.139 0.031 0.131 0.015 

Constant , KNOT 57 0.756 174.103 0.215 0.601 >0.15 

B3_PWAT_Avg3 , KNOT 57 0.884 212.878 0.29 0.697 >0.15 

B6_PWAT_Sum , KNOT 57 0.890 227.319 0.214 0.611 >0.15 

B6_PWAT_Avg3 , KNOT 57 0.886 218.39 0.485 0.746 >0.15 

Table 4  Estimations based on PWAT, AR and wind speed (Bold showed the best) (Confidence level = 95%) 



Dependent Independent variable(s) Sp. R
2
 F-ratio K-S S-W A-D 

 

 

A3_AR_Avg 

PWAT_Avg , AR_Avg , KNOT 58 0.878 137.049 0.012 0.043 0.012 

AR_Sum 57 0.897 488.963 0.009 0.022 <0.01 
PWAT_Avg3 , KNOT 58 0.835 145.075 0.000 0.007 <0.01 

B3_PWAT_Sum , KNOT 58 0.839 149.119 0.016 0.008 <0.01 
B3_PWAT_Avg3 , KNOT 58 0.832 142.093 0.000 0.004 <0.01 

 

 

A3_AR_Sum 

AR_Avg , KNOT 58 0.831 140.264 0.000 0.000 <0.01 
Constant , PWAT_Sum , AR_Sum 57 0.815 124.518 0.293 0.228 0.112 

AR_Sum 57 0.879 407.791 0.000 0.004 <0.01 
B3_PWAT_Avg , KNOT 54 0.843 142.943 0.007 0.005 <0.01 
B3_PWAT_Sum , KNOT 54 0.851 151.371 0.017 0.012 <0.01 

 

 

A6_AR_Avg 

A3_PWAT_Avg , A3_AR_Avg , KNOT 50 0.916 178.12 0.042 0.094 0.013 

Constant , A3_AR_Sum , KNOT 56 0.723 72.67 0.000 0.000 <0.01 

A3_PWAT_Sum , A3_AR_Sum , KNOT 56 0.831 91.133 0.001 0.001 <0.01 
PWAT_Avg , KNOT 49 0.896 207.467 0.092 0.043 0.011 

PWAT_Sum , KNOT 53 0.839 136.474 0.111 0.124 0.034 

 

 

A6_AR_Sum 

A3_PWAT_Avg , A3_AR_Avg , KNOT 50 0.924 198.894 0.071 0.039 <0.01 

Constant , A3_AR_Sum , KNOT 50 0.855 145.105 0.154 0.432 0.14 

A3_PWAT_Sum , A3_AR_Sum , KNOT 50 0.914 173.917 0.237 0.442 >0.15 

PWAT_Avg , KNOT 47 0.93 306.156 0.000 0.029 <0.01 
PWAT_Sum , KNOT 53 0.837 133.812 0.000 0.004 <0.01 

Table 5  Estimations based on PWAT, AR and wind speed (Bold showed the best) (Confidence level = 95%) 
 

6.  LIMITATIONS 

 

The limited numbers of the hurricanes and influencing variables are included and maybe not representative enough. 

Some outer error may come from the satellite-derived data and Kriging interpolation. In future, we will continue 

expanding our sample pool and consider more variables for more accurate predictions. 
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