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ABSTRACT: In this paper, a new approach is presented for estimating camera focal length and rotations relative to 
a world plane using only the relative positions of four points. This approach provides more flexibility for camera  
calibration, especially for the cases in which only limited ground truth data is available. First, we leverage the  
property of scale ratio for two image points to find the camera focal length. The rotation about the selected world 
reference frame is then determined by analyzing the geometric relationship among the camera center, principle 
point, vanishing point and induced vanishing line. Camera parameters estimated using this method could also be 
used as alternative initial approximation for other rigorous calibration techniques. Experimental results show that  
the proposed approach generates reasonable approximates for the parameters, especially when the vanishing points 
are obtained from a larger spatial distribution.

1.  INTRODUCTION

Among computer vision and photogrammetric processes, recovering the internal and external camera parameters 
remains a fundamental task. For the reference of interested readers,  a history of camera models and correction 
techniques, largely driven by aerial photography for map-making can be found in (Clarke and Fryer, 1998).  A 
survey for the prevailing calibration and orientation techniques can be found in (Gruen and Huang, 2001) and 
(Remondino and Fraser, 2006). In this section, a brief review of some recent research works is provided.

Over the past  century, numerous methods ranging from rigorous laboratory-conducted calibration to image based 
auto-calibration have been applied for retrieving the intrinsic camera parameters, which may include focal length, 
principle point location, skew and lens distortions. In computer vision, the calibrating techniques are even more 
diverse. For example, a plane-based approach was proposed for calibrating a fish-eye lens camera (Li and Hartley,  
2006).  A multi-view geometry  of  1D radial  cameras  is  applied  for  the  omnidirectional  camera  calibration  in  
(Thirthala and Pollefeys, 2005). For general cameras, a specific rational function lens distortion model is developed 
by (Claus and Fitzgibbon, 2005). Among various sensor models, in this paper we mainly focus on consumer-grade  
digital cameras that have no extreme distortions.

The most commonly adopted methods for internal camera calibration include observing a planar pattern shown at a 
few  different  orientations  (Zhang,  1999;  Gurdjos  and  Sturm,  2003)  or  factorization  of  homography  matrices 
(Ueshiba and Tomita, 2003). The calibration function can also be determined directly from views captured by the 
camera without any special knowledge of the scene, and one of the fastest algorithms is described in (Manning and 
Dyer,  2003).  Another  approach  of  image-based  camera  calibration  that  exploits  the  information  inherent  in 
vanishing lines has emerged and become popular in the recent years. Original approaches used three vanishing lines 
(Wang and Tsai, 1991), and then with the goal of making the approach more practical, the minimum requirement 
for this method was reduced to two vanishing lines (Grammatikopoulos et al., 2004). 

External camera calibration refers to determining the position and orientation of an internally calibrated camera 
relative  to  the  world reference  frame.  In  (Triggs,  1999),  the  camera  orientation is  estimated  using quasilinear  
methods. Apart from the traditional point-based approaches, some research efforts have been made to determine the 
camera  orientation  by  matching  linear  features.  In  (Schenk,  2004)  and  (Karjalainen  et  al.,  2006),  the  typical  
collinearity model is modified for expressing orientation and tie line parameters as a function of points measured on 
image lines.

In this paper we will introduce a 4-point correspondence procedure. It  utilizes the property of scale ratio for two 
image points introduced in (Lai and Yilmaz, 2008) for the estimation of focal length. The camera focal length is  
then incorporated with the geometry formed by camera center, principle point, vanishing point and vanishing line to 
find the three rotation angles about the world reference frame. The proposed approach provides a fast and direct  



solution  to  the  task  of  finding  camera  parameters  and  the  results  can  also  be  used  as  an  alternative  initial 
approximation for other rigorous methods.

2.  ESTIMATION OF FOCAL LENGTH

In  this  section,  we  exploit  the  single-view  geometry  to  estimate  the  camera  focal  length  via  recovering  the 
vanishing point of a reference direction and the vanishing line of the planes orthogonal to the direction. Note that, 
in this paper the principle point is assumed to lie at the image center and the distortion effects are assumed to be  
negligible.

2.1  Projective geometry 

The projection of a point  X = [ X Y Z 1 ]T in the object space to a point x = [ x y 1 ]T in the image space is 
expressed in terms of a direct linear mapping in the homogeneous coordinates as:

λx = PX                                                  (1)

in which λ is the scale factor due to the projective equivalency λx = x, and P is the camera projection matrix. In the 
case when the imaged points are lying on a plane in the object space, the projection matrix given in equation (1) 
reduces to plane projective transform. Without the loss of generality, if we choose the reference plane in the scene  
as the “ground plane” which means Z = 0 and let pi denotes the ith column vector of P, the linear mapping given in 
(1) reduces to the homography transform

sx' = HX' = [ p1 p2 p4 ] [ X Y 1 ]T                                                                        (2)

where x' is the image of point X' on the X-Y plane and H is the homography matrix. This formulation introduces 
another scale factor s, which is imposed to ensure that the last element of homogeneous coordinate vector is equal 
to 1. 

The projection in (1) can also be represented using vanishing points. When projected to the image plane, a pair of  
parallel  lines in  the object  space intersects at  a  single point  called the vanishing point.  By using the inherent 
property that column vector  p3 of P corresponds to vz, the vanishing point of Z axis, the projection in (1) can be 
rearranged as:

λx = sx' + Zvz  (3)

In equation (3), λ = s + Z due to the setting that the last element of any homogeneous coordinate vector is 1. If both 
x' and x can be identified on the image and Z is known for point X, s is trivial to compute.

2.2 Estimating focal length from scale ratio

A vanishing line is  the image of an ideal  line lying at  infinity,  and it can be determined intuitively from two  
vanishing points. In (Lai and Yilmaz, 2009) the vanishing line of X-Y plane is estimated from the property of scale  
ratio (Lai and Yilmaz, 2008):

Scale ratio of two image points: When projecting two points X1, X2 lying on a plane π in the object space onto the  
corresponding points x1, x2 in the image space using homography, the ratio of the introduced scale factors s1 and s2 

is the inverse proportion of the distances from the image points to the vanishing line of plane π.

Let D(lv , xi) denote the distance from image point xi to the vanishing line lv, the property can be expressed as

s1

s2

=
D (l v , x2)
D (l v , x1)

                                                                         (4)

Estimating focal length, f, from the scale ratio and vanishing line has been introduced in (Lai and Yilmaz, 2009). In  
this paper, we propose an alternative derivation without explicitly solving for the vanishing line. By assuming that 
the  principal  point  coincides  with  the  image center,  the  image  points  can  be  centered  and  calibration  matrix 
simplified to K = diag(f, f, 1). Let ω = diag(1/f2, 1/f2, 1) be the image of the absolute conic. Due to the orthogonality 
in the object space, the vanishing point vz and the vanishing line lv are related by

lv = ω vz                                                                                (5)



More detail about this relationship can be found in (Hartley and Zisserman, 2004). Let vz = [v1 v2 1]T, x1 = [x1 y1 1]T 

and x2 = [x2 y2 1]T. By replacing ω with the values of f and using equation (4), we obtain directly the equation:

f2 = ( s2 ( v1x2 + v2y2 ) - s1 ( v1x1 + v2y1 ) ) / (s1 - s2)                                                 (6)

Hence, if two points on a plane are identified on the image and their scale ratio and the vanishing point of the  
normal to the plane are computed, camera focal length can be obtained with only four points measurements. We 
have to emphasize here that the focal length computed from (6) is an approximation and not a rigorous calibration 
result. Also, the scale ratio is independent of the actual length of the measured linear feature in the object space,  
only the relative length or height is required. Instead of six-point correspondences that other approaches require to 
recover the projection matrix, the proposed approach utilizes information inherent in these four points for retrieving 
camera rotations relative to a plane, as will be elaborated in the next section. 

3. CAMERA ROTATION RELATIVE TO A PLANE

A variety of approaches have focused on the recovery of camera rotation about a world coordinate frame. Instead of  
providing robust camera pose estimation, in this section we demonstrate a technique for intuitively and flexibly 
aligning an image plane relative to a plane π in object space. Assume focal length f, vanishing line lv of a plane π 
and vanishing point vz of the plane normal are obtained using the approach described in the previous section. The 
image x and y axes are assigned as shown in Figure 1(a) and z coincides with the principle axis. Let  pp be the 
principle point and α, β, γ denote rotation angles about the camera x, y, and z axes, respectively. First the rotation is 
performed about z by

 γ =arctan(
v2

v1

) ,                                                                            (7)

after which vz lies at y axis and lv becomes parallel to the x axis (Figure 1(b)). 

(a)     (b)       (c)
Figure 1. (a) Geometry between lv, vz and pp in the original image. (b) Geometry after first rotation. (c)  Geometry 
between lv, vz, pp and camera center cc.

The next rotation depends on whether the image plane is to be aligned as parallel to the plane π or to the plane 
normal.  According to the geometry shown in Figure 1(c), in the first case the image is rotated about x by α' = - α 
where

α=arctan (
D(vz , pp)

f
)                                                                    (8)

and vz is moved to the location of pp after rotation. If the rotation angle is α' = π/2 – α instead, lv lies at x axis and vz 

is cast to infinity as expected for the second case. 

Following a similar rotation procedure, the image axis can be aligned to any line l parallel to π in object space using 
the rotation about y axis. Let l intersect lv at vx in the original image. After the rotations by γ and  α' = π/2 – α, vx is 
transformed to its new location 
 

vx
' =K R x R z K−1v x                                                                        (9)

where the rotation matrices are



Rz=[cosγ −sinγ 0
sinγ cosγ 0

0 0 1] and Rx=[1 0 0
0 cosα ' −sinα '
0 sinα ' cosα ' ] .                                    (10)

Again, when the image plane is rotated about the y axis by

β=arctan (
D (vx

' , pp)
f

) , and R y=[ cosβ 0 sin β
0 1 0

−sin β 0 cosβ ] ,                                    (11)

vx' is moved to infinity and image plane is now parallel to  l. This process enables the estimation of angles 
between  specific  planes  or  linear  features  and  can  be  extended  into  other  applications  such  as  image 
rectification, which is demonstrated in the next section. 

4. EXPERIMENTS

The first experiment used an image of the calibration pattern and its calibrated focal length provided in (Bouguet, 
2010) to demonstrate the 4-point correspondence procedure. In the original image (Figure 2(a)), assume two points 
x1 and x2 correspond to the points lying on a line parallel to the X axis in the object space. The point pairs (x1, x1') 
and (x2, x2') provide the vanishing point vz. In addition, the heights (or Z values) for x1' and x2' are set as 100 and 80 
respectively. The focal length f = 657.7 is computed using the steps described in Section 2, and this value is very 
similar to the rigorously calibrated focal length value f  = 657.5 .

                                                    (a)                                                                          (b)

                                                     (c)                                                                         (d)
Figure 2. Experiment using calibration pattern:  (a) Original image and the four points used for computing scale 
ratio. (b) Transformed image after rotating γ about the z axis. (c) Transformed image after rotating π/2 – α about the 
x axis. (d) Rectified image after rotating β about the y axis.

Although in this example, image rectification of the X-Z plane can be achieved directly by transforming original  
image I as I '=K R y R x R z K−1 I , the image after each rotation is included in Figure 2 to illustrate each step in the  
process. It is clearly observed that the grid pattern is recovered as squares in the last image. 



Another experiment on the image provided in (ISPRS, 2008) helps reveal the validity of applying the proposed 
approach on real world scenes. As shown in Figure 3(a), one of the window panes near image center is selected and  
measured for computation. The computed focal length f = 1954.2 is significantly greater than the calibrated value f 
= 1736.7. When another set of points with a larger span is selected (Figure 3(b)), the computed focal length f =  
1615.7 is much closer to the calibrated value. This is because the focal length estimation is sensitive to error in the  
calculated vanishing point location. If the vanishing point is obtained from points with more concentrated spatial  
distribution (shorter distance between points), its location is more affected by the measurement error, hence the 
estimated  focal  length  is  less  reliable.  In  addition,  the  approximation  is  obtained  from only  four  points  and 
distortions are not modeled. However, this approach can still provide a fast way to generate an initial guess of  
parameters that can be utilized in other robust calibration approaches.

                                                
(a)                                                                               (b)

(c)                                                                                (d)

(e)
Figure 3. Experiment on a building image: (a) Only one window is used for computing vanishing point and scale 
ratio. (b) Four points with larger spans are selected. (c) Transformed image after rotating γ about the z axis. (d)  
Transformed image after rotating π/2 – α about the x axis. (e) Rectified image after rotating β about the y axis.



5. CONCLUSION

We have presented a new approach for the estimation of camera parameters by exploiting the characteristics of  
parallelism and orthogonality in projective geometry. The proposed approach provides flexible and fast estimations 
for camera focal length and rotations from a single vanishing point and scale ratio, and is useful especially in the 
cases where it is hard or impossible to perform rigorous calibration due to limited information about object space.
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