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ABSTRACT: This paper addresses the land cover classifica@mabilities of multi-temporal synthetic aperture

radar (SAR) data and optical data fusion basedaye&an approach. Multi-temporal SAR data were tis@xtract
average backscattering coefficient, backscattepteat variability and long-term coherence while tieflectance
values were calculated using the optical data. Gueyel Co-occurrence Matrix (GLCM) based textureasm@ge
including mean, standard deviation, correlationpt@st, homogeneity, dissimilarity, and entropy weed to
parameterize texture in the image. These featusemtegrated in the Bayesian approach. Three psing steps for
the classification were used in this study: 1) infation fission by feature extraction. 2) Superdistassification
with grayscale value of information fission. Théime maximum a posteriori (MAP) estimation can beduto label
each class. 3) The combination of logical operat@s applied to compute the final combined Bayesiambership
value function. Finally, the classification resultere generated taking Osaka city of Japan astticly area. In the
experiment, fourteen ALOS/PALSAR level 1.1, singlgarization data, and ALOS/AVNIR-2 level 1B2G datere
used. The major classes were selected to be lpdreas, fields, forests, and water bodies. Itfaasd in SAR and
optical images that mean images produced the ésglt among the texture measures because of thetlsimg effect
for image. Moreover, the correlation results ofttee measurements with mean texture showed thag usghly
correlated textures can have lower accuraciedditian to this, a slight increase in accuracy ¥easd when using
multi-temporal SAR and optical data fusion combgniil texture images. The study shows that comimnabf
various textures can improve over single-set textout the low correlation between textures shbeldonsidered.

1. INTRODUCTION

Earth-observing satellites currently operate inuiséble, infrared, and microwave regions of thegpum. Hence,
the remote sensed imagery was produced by theeaaticrowave and passive optical sensors. In term
classification, an optical image is easy for intetation, but on the other hand SAR images with abdded
advantageous of its all weather, day and nightaifmral capabilities and the penetration possiedibver cloud,
haze and rainfall, is difficult to interpret. Theignificant is based on the properties of sigrafsk signals contains
specific information such as the sensitivity of taxkscattering coefficient to target geometry padnittivity; and
the coherence of the electromagnetic pulse thahiperinterferometry. The spectral reflectance is #pecific

of

information contained in optical sensor signal. ldeer, Bruzzonet al. [1] stated that, there are some limitations of

using SAR and optical data for classification sashthe presence of speckle noise and geometrigrésafi.e.,

foreshortening, layover and radar shadow) whileajtical sensors fails due to the unavailabilitclofud-free data.
With the above causes, it is difficult to obtaimgtniclassification accuracy if used only a singlarse image or a
single polarization SAR image. To mitigate thesebfgms, the typical operational frameworks are itared as
follows: 1) use of fully polarimetric images; 2)tddusion between SAR data and multispectral imaayad 3) using
series of multi-temporal SAR images acquired onstme geographic area. Though the fully polarimetata may
increase the separability of land-cover classetsthaue is limitation of remote sensing systemnovjge for all the

region of interest area. The accuracy of the SARaptical image fusion depends on the complemeiméoymation

provided by active microwave and passive opticakses. In recent years, the use of multi-tempofR Sata has
increased for the production of land-cover maparmglyzing the temporal behavior of the backscattecbefficient.

For these reasons, the integration of multi-temp8XR images and optical data can be considerdittome an
operational tool for land cover classificationttis framework texture can be considered as afgignt parameter to
identify land cover classes in the image.



Tsoet al. [4] stated that data fusion is a formal framewfk the bringing together of imagery originatingtfn
different sources, viewing the same scene. In tfrclassification, the assumption is made thatdlassification
accuracy should improve if additional featuresedrxorporated. Mainly because the greater the atrafuelevant
information that is included, the higher the prabgbthat interclass confusion will be reduced.uBhit can be
foreseen that the development of multisource diaation methodologies will become increasingly rant.
Generally, standard features associated with titggesidate SAR or optical signals are commonly eikgdbby using
maximum-likelihood classifiers. But when nonlindaatures extracted from multi-temporal images setlimages
from different sources are involved, Bayesian denitheory is considered as the classification wettogy because
it is the fundamental statistical approach to ttebfem of pattern recognition. The main objectiveéhis paper is to
investigate the land cover classification capaegiof individual multi-temporal synthetic apertueslar (SAR) and
optical images, and there combination with the GLEAded texture measures in a Bayesian framewoekp@per is
organized in seven sections. Section 2 introdusesharacteristics of the study areas. Sectiord3tatescribes the
pre-processing and processing techniques. Theifetaisn method based on the Bayesian theory ésgmted in
Section 5. The experimental results are reporteddéstussed in Section 6. The paper is conclud&sation 7.

2. STUDY AREA AND DATA DESCRIPTION

The study area was selected in Osaka city, Japsaka(xity area is completely surrounded by more tha cities.
With the development of this proposed framework feassed, using four major land cover classes stingihuman
settlements, forest, fields and water. The mutigieral ALOS/PALSAR fine beam HH-polarization (L-thrdata
and an optical ALOS/AVNIR-2 data with four spectpainds were used as shown in Figure 1(a) ande@gpectively.
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(a) Original HH polarization ALOS/PALSAR images. (b) Original four bands of ALOS/AVNIR-2 images
Figure 1. ALOS satellite images of Osaka city, dapa

The fourteen PALSAR images at level 1.1 with asaemdrbit of observation and 34.3° off-nadir angkesquired on
8 October 2006 to 16 July 2009 were used. The psiee are 9,344 x 18,432 (FBS) and 4,640 x 18(BBD). The

range and azimuth pixel size (m) are 4.68 x 6. B5)Fand 9.37 x 12.7 (FBD). An optical AVNIR-2 imags level

1B2G (geometrically corrected data) with descendirigt of observation image was acquired on 18 [26§9. The

size is 8,491 x 8,390 pixels with 10m spatial regoh. The sun angle elevation and azimuth werg3%nd 133.58°,
respectively. Moreover, the DEM 90m resolution \abs® used to georeference the SAR data.

3. PRE-PROCESSING TECHNIQUES

The PALSAR images were orthorectified by using gitdi elevation model to correct foreshortening fdse
performing fusion activities, all images have todoeprocessed to obtain the consistent image sidgeolocation.
In this paper, SAR images were resampled at the lRvAlimage pixel size (10m.), and were coregistéoedTM

projection, zone 53 north, and WGS-84 geodeticrdaBesides, all images were clipped to 5,493 x B #9els.

4. PROCESSING TECHNIQUES

The used features were extracted based on thersegtproperties of multi-temporal SAR data frone study of
Bruzzoneet al. [1]. The spectral reflectand®] was used as the optical signal. In this papes, Gray Level
Co-occurrence Matrix (GLCM) is applied to measueatire. GLCM is a tabulation of how often different
combinations of pixel gray levels occur in an imabee GLCM texture measures including mean, stahdaviation,
correlation, contrast, homogeneity, dissimilariaypd entropy were analyzed. The feature extractpgraaches of
multi-temporal SAR images are described as follows:



4.1 Average Backscattering Coefficient

The backscattering coefficient can be derived fthencomplex SAR dat&Vith the multi-temporal images used, an
appropriate noise reduction processing should msidered. Therefore, the multi-temporal filteringpeoach of
Quegan et al. [3] was applied. Then, the filtered average baditsdag coefficient is defined as:
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wheregy;; is the filtered output for thig input imageg; is the backscatter valuk.is the intensity valuedd is the
number of imagesiq g is the forst adaptive filtering of backscatterougfficient image.

4.2 Backscattering Temporal Variability
In this experiment, the “Standard Deviation” wagdibecause of its capabilities in identifying tipeesd of the

backscattering coefficient. It is effective andvitgdues are more meaningful and easier to undetsidrerefore, the
filtered standard deviation backscattering tempeaaiabiity is defined as:

M
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4.3 Long-term Coherence

Coherence is defined as the absolute value ofdhmalized complex correlation coefficient. The letegm L-band
coherence is derived from tested multi-temporalgesaand can be computed as follows. 1) Select @lepairs of
base and slave images; 2) Generate the cohereagesmand 3) Average the images.

5. CLASSIFICATION METHOD BASED ON THE BAYESIAN THEORY
5.1 Data Fusion Classification
There are three processing steps of data fusiesifization method based on Bayesian theory as showigure 2.

The data sources used are the multi-temporal SAR dad an optical data. It is assumed that thete al®
preprocessed as described in Section 3. The dsitmfalassification method is delineated as follows
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Figure 2. Classification method of multi-tempor@lSand an optical data fusion based on Bayesiasryhe
5.1.1 Information Fission

The information fission performed by feature exti@tfrom each source or set of sources as destiib8ection 4.
For multi-temporal SAR data, average backscatteroefficient (BSC), backscatter temporal variabi(BTV) and

long-term coherence (COH) are extracted. Spedatfldatance (RF) is calculated from optical datardbwer, eight
GLCM texture measures (TEXT) are also used. Thesteifes can describe various properties of therobdescene.

5.1.2 Classification

The second step is supervised classification wilygrale value of information fission using Bayadiaeory. Each
extracted feature is converted to the grayscaleetiuce the complexity of the data before implenmentiith
Bayesian classification. The user interactivelyvies the training set of each class with accordancthe rule
described in Section 5.2. Then, Bayesian theorypdgormed. This theory allows analyzing uniformlyet
uncertainties in the data, which were acquired fraterogeneous sources and non-commensurableefgaalso it
easily incorporate additional prior information. thre general multisource case, a set of obsensafimmn, n>1
different classes is used to implement the relatimetween classes. Lgti € [1,n] denote the measure of a specific



pixel from measurement class These relations are described by the probalsilites a result, the posteriori
probabilities are obtained for each ofnformation classy;, j ¢ [1,c]. These probabilities are used further in the
classification that is assigning the label with tiighest probability to each pixel of the data. Blagesian probability
theory states that:

P(o;) x P(X|o;)
P(X)

P(a)j|X): , X =X, X,,..0,X, Where P(X):Zn:P(a)j)x P(X‘a)j) (3)
=
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where P@j|x1,Xz,...Xn) is known as the conditional or posterior probibithat o; is the correct class, given the
observed data vector i(Xy,...X,). P(X,Xz,...X:lo)) is the likelihood probability. The prior probabbf classw; is
denoted by Rf).

P(]X,, Xp1001%,) (4)

5.1.3 Information Fusion

In the third step, the AND and OR logical operatmes applied to compute the final combined Bayesiambership
value function. In case of optical fusion (or ordflectance combination of four bands); or multhforal SAR data
fusion (or only three SAR signals combination), @ferator is used. Since the texture measures aeg fIAND

operator is used together with OR operator toyath original reflectance combination of four barmtsombination
of three SAR signals. Finally, the classificati@sult is generated.

5.2 Selection of Training Set and Test Set

By analyzing the data for each class, trainingnset selected based on proportionate sampling methocter to
train the Bayesian network, for larger classes rsaraple pixels were selected. To access the dtadsih accuracy,
the test set was selected from different set dbregof interest (ROIs) of the samples of traingeg In this study, the
selection of training and test sets were basedR@ITS5 satellite imagery as shown in Table 1.

Table 1. Number of training and test set used eénetkperiments.

Land cover class Water bodies(Blue) | Forests(Green) | Fields(Yellow) | Human Settlements(Red) | Total Pixels

Training set (pixels) 2,893 3,779 3,325 6,259 16,256

Test set (pixels) 28,108 37,181 32,857 60,660 158,80¢

5.3 Post Classification Smoothing and Accuracy Analysis

Since the raw classified image appears noisy duketasolated pixels spread in more homogeneousnegSuch
pixels can be removed by making use of majoritgfilin this study, median filter (5x5 window sizeds applied to
the classification results. To assess the classific performance, an overall accuracy and kapgd#ficent were
analyzed.

6. EXPERIMENTAL RESULTSAND DISCUSSION

The data fusion experiments were classified inteetmajor cases consist optical data fusion (caseulti-temporal
SAR data fusion (case 2); and multi-temporal SAR dand optical data fusion (case 3). In each dhsetextures
cobiation was analyzed. The results are showiabie 2 and Figure 3.

(a) Reflectance. (b) Reflectance + Mean. (c) Reflectance + (d) SAR signals + (e) Reflectance and SAR
All Texture. All Texture. signals + All Texture.
Figure 3. Classification results of optical datsidun [(a), (b), and (c)]; multi-temporal SAR datsibn (d); and
multi-temporal SAR data and optical data fusiof;wih texture measures.



Table 2. Overall classification accuracies and kappefficient of accuracy exhibited on the test set

Data Fusion Number of files Before post classification | After post classification
Cases Overall K appa Overall Kappa
1.1 Reflectance 4 69.43%  0.5545 70.16% 0.5646
1.2 Mean 4 75.47%  0.646% 75.77% 0.646p
1.3 Reflectance + Mean 8 76.17%  0.6567 76.56% 0.6609
1.3.1| Reflectance + Mean + Variance 12 7458%  0.682775.70% 0.6482
1.3.2| Reflectance + Mean + Correlation 12 73.86% (@62 73.81% 0.6192
1. Optical 1.3.3| Reflectance + Mean + Homogeneity 12 76.12% 54B6| 75.98% 0.6521
’ 1.3.4| Reflectance + Mean + Contrast 12 75.72%  0.649576.09% 0.6538
1.3.5| Reflectance + Mean + Dissimilarity 12 76.07% .65@1 76.05% 0.6533
1.3.6 | Reflectance + Mean + Entropy 12 7455%  0.630774.52% 0.6295
1.4 Reflectance + Statistic Group 16 76.09% 0.6544 6.10%% 0.6538
15 Reflectance + Statistic + Contrast Groyps |28 986.1 0.6565 76.29% 0.6568
1.6 Reflectance + All Texture 32 76.26%  0.6576 7%42| 0.6588
. 2.1 SAR signals 3 75.879 0.666 82.03% 0.7516
2. 'V'U'g'tempora' 2.2 | SAR signals + Mean 6 77.20% 0.6824  82.54% 0.75[75
AR 2.3 SAR signals + All Texture 24  77.24%  0.6829 8%63| 0.7587
3.1 Reflectance and SAR signals 7 79.34%  0.7175 84.92 0.7924
3. Multitemporal| 3.2 | Reflectance + fiean and 14 | 81.73%| 07578  86.29% 0.81
. signals + Mean
SAR and Optical Reflectance + All Texture and o o g
3.3 SAR signals + All Texture 56 | 82.75% | 0.7632 86.83% 0.81449

Table 3. The correlation coefficient between mesdture and other texture images of optical data

Correélation coefficient Bandl | Band2 | Band3 | Band4 | Averageof 4 bands Overall accuracy
Mean + Variance 0.92 0.88 0.96 0.8 0.91 73.96%
Mean + Correlation 0.33 0.33 0.34] 0.3 0.35 72.92%
Mean + Homogeneity 0.22 0.21 0.23 0.20 0.22 75.92%
Mean + Contrast 0.89 0.87 0.94 0.89 0.90 73.89%
Mean + Dissimilarity 0.84 0.89 0.88 0.87] 0.87 7338
Mean + Entropy 0.41 0.38 0.39 0.37 0.39 74.00%

Consider the results obtained from optical datéofusn Table 2 (casel) with Figure 3 (a, b, andFijure 3(a)

presented the classification of reflectance imdgesill four bands combination. From visual intergation of the
result reveal that the forest class was misclassifis the water class in the bottom-center patteofmage due to
cloud cover from optical data. It also showedltweest overall accuracy (69.43%) as shown in cdsed .addition,

the texture parameters were analyzed as well.detatly, the mean texture of reflectance combirhdour bands in
casel.2 showed 8% improvement over original redlezd combination. This improved classification heisipresent
in Figure 3(b). The classified forest class wageaxied from misclassified urban class in the bottmht of the

image. With this result, it was found that meartuex is a significant parameter for classificatidherefore, the
combination of the original reflectance and meatiut® was also investigated as shown in casel.@eMer, the

accuracy increased slightly in the range of 0.92%.

In addition to this, other seven textures measure® analyzed. The data fusion between reflectamcemean
texture with all the other textures measures ofalt bands were experimented respectively, frodallto 1.3.6 in
Table 2. In all of these cases, lower accuracigs wenerated. It can be seen that the reliabilityncertainty of each
data source should be considered before the étatmh of multisource data is applied. In thisdstuthe correlation
coefficient is used as the indicator for measuthegfusion quality. From the result in Table 3, lineest correlation
between the mean and homogeneity textures genenatdiljhest overall accuracy of classificationwdis found that
the correlation coefficient closer to zero was @nefd because the highly correlated textures showaniation

between the classes of interest to be classifibh. dould be a drawback to the achievement of higlassification

accuracy. Among texture measures, mean texturenpezfl better than others because of the smootbt effehe

image. Moreover, the data fusion between reflagtaand texture statistic group (including meanjarae and
correlation) in Table 2 casel.4; the data fusiotveen reflectance with texture statistic group aadtrast group
(including homogeneity, contrast and dissimilarity) casel.5; and the data fusion between refleetamd all

textures in case 1.6 with Figure 3(c) were testatifaund that their accuracies were slight incrdase

The classification results obtained from multi-tergd SAR data fusion in Table 2, case 2 and Fi@(d are
discussed as follows. Table 2, case 2.1 showsifitas®n result of the combination of SAR signateluding
(average backscattering coefficient, backscattetergporal variability and long-term coherence). Tdwerall
accuracy was 75.87%. From this result it can beddhat the integration of a reliable feature ecttoan approaches



based on the physics of multi-temporal SAR sigoals solve a multi class problem with multi-temp@&R data.
According to the experiment of SAR signals with méaxture of each signal combination as shown ge &2, the
results show 1.72% improvement than the case2.ih Wis result, mean texture can be used to imptbee
classification accuracy for SAR data, mainly theaméexture can reduce speckle noise most effegtitebm the
comparison of the improvement percentage of mednri combination between optical and multi-temp&AaR

data, it was found that the changing range for irbeifhporal SAR data is shorter. The reason is tbe of
multi-temporal filtering as described in Sectiof,4he noise of SAR data can be reduced. In casathJ-igure 3(d),
the data fusion of SAR signals and all texture adresignals, outperformed with the 0.05% increassmiracy
(overall accuracy: 77.24%).

The classification results obtained from multi-texrad SAR data and optical data fusion in Tablea®ec3 and Figure
3(e) are discussed as follows. Table 2, casel®s classification result of the combination ofFS8ignals and
reflectance of four bands. The overall accuracy "a84%. The experiment of data fusion with meatute of each
signal combination is shown in case 3.2. It reprexk 81.73%% overall accuracy, which was 2.92% awpment
from case3.1. Finally in case3.3 with Figure 3{kg data fusion of SAR signals and reflectance waitlexture of
each signals, outperformed the case3.2 with 1.28&teased accuracy (overall accuracy: 82.75%). Towt p
classification filtering can improve the capabdgiof classified results and accuracies. In Taftlee2results of all the
cases after using post-classification smoothinddgi the better accuracies, increasing approxima@e% for
optical data fusion, 6.8% for multi-temporal SARal&usion and 5.5% for multi-temporal SAR data aptical data
fusion respectively. In addition, it should be rmbthat the amount of smoothing depends on theasitee window.

7. CONCLUSION

The classification method for multi-temporal SARaland optical data fusion based on Bayesian theasybeen
proposed based on three processing steps inclublimgformation fission by extracting the featuogsanalyzing the
physical properties of the multi-temporal SAR signaeflectance data from optical data, and GLCMtuee
measures; 2) supervised classification with grdgsealue of information fission based on Bayesiagoty. This
classifier learns the relationships between thssels and the maximum a posteriori (MAP) estimatissign the
classes; 3) final combined Bayesian membershipevhioction for each class was computed using coatioin of
logical operators. Thus, the classified resultsenggrnerated. The water, forest, fields and humtlesents classes
were studied. From the analysis of all the expentiaderesults, it can be concluded that the feantegration of SAR
signals including the average backscattering ctiefft, backscattering temporal variability and ldéagn coherence
are effective in modeling the series of multi-temg&SAR data. However, the classification usingyrsource is
still insufficient to carry out the high accuraaydgood quality, due to the sensor based drawksaaksas the cloud
cover of optical data; or the relief displacementl dhe speckle noise from SAR data. These effdutsild be
accounted prior to the multisource classificatiomgedures. GLCM texture measures were also analytedresults
demonstrated that, using mean texture combinaigmificantly improved the classification accuraciise to the
influence of the smoothening effect. In additidre study of correlation between mean and otheutegtshows that
the use of highly correlated textures can loweratb&uracy. However, the combination of variousueximeasures
showed better results over single-set texture nreabecause of their different and complementaigrmation. The
result suggests that the multi-temporal SAR andcaptdata fusion combining all texture images whghtly
accurate than in the case of combining only withritean texture. Post-classification filtering psgean improve
classification result considerably. Eventually, tiassification using multisource data fusion otfpened single
source fusion. This is mainly because approprigi@eted features can increased the capacitigseasults and can
reduce the complexity of functions in classificatimethod. For the future development of this wankye different
class combinations can be incorporated to see theirimination in the classification. As a finamark, this
classification method worth to be an operational for classification problems involving the landvers classes.

ACKNOWLEDGEMENT
This research was supported by a program of thal®S Research Announcement.

REFERENCES

[1] Bruzzone, L., Marconcini, M., Wegmuller, U., and \#figann, A., 2004. An advanced system for the auforoiassification
of multi-temporal SAR images. IEEE Transactions @o€tience and Remote Sensing, 42 (6), pp. 1321-1334.

[2] Chander, G., and Markham, B., 2003. Revised Land$¥-Eadiometric calibration procedures and posteatibn dynamic
ranges. |IEEE Transactions on Geoscience and Rerangng, 41 (11), pp. 2674-2677.

[3] Quegan, S., and Yu, J. J., 2001. Filtering of rohéinnel SAR images. IEEE Transactions on Geoscemté&emote

Sensing, 39 (11), pp. 2373-2379.
[4] Tso, B., and Mather, P. M., 2001. Classification Methfor Remotely Sensed Datd Bd Taylor and Francis Group,
London, pp. 290-297.



