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ABSTRACT: This paper addresses the land cover classification capabilities of multi-temporal synthetic aperture 
radar (SAR) data and optical data fusion based on Bayesian approach. Multi-temporal SAR data were used to extract 
average backscattering coefficient, backscatter temporal variability and long-term coherence while the reflectance 
values were calculated using the optical data. Grey Level Co-occurrence Matrix (GLCM) based texture measure 
including mean, standard deviation, correlation, contrast, homogeneity, dissimilarity, and entropy was used to 
parameterize texture in the image. These features are integrated in the Bayesian approach. Three processing steps for 
the classification were used in this study: 1) Information fission by feature extraction. 2) Supervised classification 
with grayscale value of information fission. Then, the maximum a posteriori (MAP) estimation can be used to label 
each class. 3) The combination of logical operators was applied to compute the final combined Bayesian membership 
value function. Finally, the classification results were generated taking Osaka city of Japan as the study area. In the 
experiment, fourteen ALOS/PALSAR level 1.1, single-polarization data, and ALOS/AVNIR-2 level 1B2G data were 
used. The major classes were selected to be built-up areas, fields, forests, and water bodies.  It was found in SAR and 
optical images that mean images produced the best result among the texture measures because of the smoothing effect 
for image. Moreover, the correlation results of texture measurements with mean texture showed that using highly 
correlated textures can have lower accuracies. In addition to this, a slight increase in accuracy was found when using 
multi-temporal SAR and optical data fusion combining all texture images. The study shows that combination of 
various textures can improve over single-set texture, but the low correlation between textures should be considered.  
 
1.  INTRODUCTION 
 
Earth-observing satellites currently operate in the visible, infrared, and microwave regions of the spectrum. Hence, 
the remote sensed imagery was produced by the active microwave and passive optical sensors. In term of 
classification, an optical image is easy for interpretation, but on the other hand SAR images with the added 
advantageous of its all weather, day and night operational capabilities and the penetration possibilities over cloud, 
haze and rainfall, is difficult to interpret. Their significant is based on the properties of signals. SAR signals contains 
specific information such as the sensitivity of the backscattering coefficient to target geometry and permittivity; and 
the coherence of the electromagnetic pulse that permits interferometry. The spectral reflectance is the specific 
information contained in optical sensor signal. However, Bruzzone et al. [1] stated that, there are some limitations of 
using SAR and optical data for classification such as the presence of speckle noise and geometric features (i.e., 
foreshortening, layover and radar shadow) while the optical sensors fails due to the unavailability of cloud-free data. 
With the above causes, it is difficult to obtain high classification accuracy if used only a single source image or a 
single polarization SAR image. To mitigate these problems, the typical operational frameworks are considered as 
follows: 1) use of fully polarimetric images; 2) data fusion between SAR data and multispectral images; and 3) using 
series of multi-temporal SAR images acquired on the same geographic area. Though the fully polarimetric data may 
increase the separability of land-cover classes, but there is limitation of remote sensing system to provide for all the 
region of interest area. The accuracy of the SAR and optical image fusion depends on the complementary information 
provided by active microwave and passive optical sensors. In recent years, the use of multi-temporal SAR data has 
increased for the production of land-cover maps by analyzing the temporal behavior of the backscattering coefficient. 
For these reasons, the integration of multi-temporal SAR images and optical data can be considered to become an 
operational tool for land cover classification. In this framework texture can be considered as a significant parameter to 
identify land cover classes in the image.  
 



Tso et al. [4] stated that data fusion is a formal framework for the bringing together of imagery originating from 
different sources, viewing the same scene. In term of classification, the assumption is made that the classification 
accuracy should improve if additional features to be incorporated. Mainly because the greater the amount of relevant 
information that is included, the higher the probability that interclass confusion will be reduced. Thus, it can be 
foreseen that the development of multisource classification methodologies will become increasingly important. 
Generally, standard features associated with the single-date SAR or optical signals are commonly exploited by using 
maximum-likelihood classifiers. But when nonlinear features extracted from multi-temporal images or fused images 
from different sources are involved, Bayesian decision theory is considered as the classification methodology because 
it is the fundamental statistical approach to the problem of pattern recognition. The main objective of this paper is to 
investigate the land cover classification capabilities of individual multi-temporal synthetic aperture radar (SAR) and 
optical images, and there combination with the GLCM based texture measures in a Bayesian framework. The paper is 
organized in seven sections. Section 2 introduces the characteristics of the study areas. Section 3 and 4 describes the 
pre-processing and processing techniques. The classification method based on the Bayesian theory is presented in 
Section 5. The experimental results are reported and discussed in Section 6. The paper is concluded in Section 7. 
 
2.  STUDY AREA AND DATA DESCRIPTION 
 
The study area was selected in Osaka city, Japan. Osaka city area is completely surrounded by more than ten cities. 
With the development of this proposed framework was focused, using four major land cover classes consisting human 
settlements, forest, fields and water. The multi-temporal ALOS/PALSAR fine beam HH-polarization (L-band) data 
and an optical ALOS/AVNIR-2 data with four spectral bands were used as shown in Figure 1(a) and (b), respectively.  
 

   

(a) Original HH polarization ALOS/PALSAR images.        (b) Original four bands of ALOS/AVNIR-2 images. 
Figure 1. ALOS satellite images of Osaka city, Japan. 

 
The fourteen PALSAR images at level 1.1 with ascending orbit of observation and 34.3º off-nadir angles, acquired on 
8 October 2006 to 16 July 2009 were used. The pixels size are 9,344 x 18,432 (FBS) and 4,640 x 18,432 (FBD). The 
range and azimuth pixel size (m) are 4.68 x 6.35 (FBS) and 9.37 x 12.7 (FBD). An optical AVNIR-2 image, at level 
1B2G (geometrically corrected data) with descending orbit of observation image was acquired on 18 May 2009. The 
size is 8,491 x 8,390 pixels with 10m spatial resolution. The sun angle elevation and azimuth were 69.39º and 133.58º, 
respectively. Moreover, the DEM 90m resolution was also used to georeference the SAR data. 
 
3. PRE-PROCESSING TECHNIQUES 
 
The PALSAR images were orthorectified by using a digital elevation model to correct foreshortening. Before 
performing fusion activities, all images have to be preprocessed to obtain the consistent image size and geolocation. 
In this paper, SAR images were resampled at the AVNIR-2 image pixel size (10m.), and were coregistered to UTM 
projection, zone 53 north, and WGS-84 geodetic datum. Besides, all images were clipped to 5,493 x 6,292 pixels. 
 
4.  PROCESSING TECHNIQUES 
 
The used features were extracted based on the scattering properties of multi-temporal SAR data from the study of 
Bruzzone et al. [1]. The spectral reflectance [2] was used as the optical signal. In this paper, the Gray Level 
Co-occurrence Matrix (GLCM) is applied to measure texture. GLCM is a tabulation of how often different 
combinations of pixel gray levels occur in an image. The GLCM texture measures including mean, standard deviation, 
correlation, contrast, homogeneity, dissimilarity, and entropy were analyzed. The feature extraction approaches of 
multi-temporal SAR images are described as follows: 
 



4.1 Average Backscattering Coefficient 
 
The backscattering coefficient can be derived from the complex SAR data. With the multi-temporal images used, an 
appropriate noise reduction processing should be considered. Therefore, the multi-temporal filtering approach of 
Quegan et al. [3] was applied. Then, the filtered average backscattering coefficient is defined as: 
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where σfil,i is the filtered output for the ith input image. σi  is the backscatter value. Ii is the intensity values. M is the 
number of images. σforst is the forst adaptive filtering of backscattering coefficient image i. 
  
4.2 Backscattering Temporal Variability 
 
In this experiment, the “Standard Deviation” was used because of its capabilities in identifying the spread of the 
backscattering coefficient. It is effective and its values are more meaningful and easier to understand. Therefore, the 
filtered standard deviation backscattering temporal variabiity is defined as: 
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4.3 Long-term Coherence 
 
Coherence is defined as the absolute value of the normalized complex correlation coefficient. The long-term L-band 
coherence is derived from tested multi-temporal images and can be computed as follows. 1) Select several pairs of 
base and slave images; 2) Generate the coherence images; and 3) Average the images. 
 
5.  CLASSIFICATION METHOD BASED ON THE BAYESIAN THEORY 
 

5.1 Data Fusion Classification 
 
There are three processing steps of data fusion classification method based on Bayesian theory as shown in Figure 2. 
The data sources used are the multi-temporal SAR data and an optical data. It is assumed that these data are 
preprocessed as described in Section 3. The data fusion classification method is delineated as follows.  

Figure 2. Classification method of multi-temporal SAR and an optical data fusion based on Bayesian theory. 
 
5.1.1 Information Fission 
 
The information fission performed by feature extraction from each source or set of sources as described in Section 4. 
For multi-temporal SAR data, average backscattering coefficient (BSC), backscatter temporal variability (BTV) and 
long-term coherence (COH) are extracted. Spectral reflectance (RF) is calculated from optical data. Moreover, eight 
GLCM texture measures (TEXT) are also used. These features can describe various properties of the observed scene.  
 
5.1.2 Classification  
 
The second step is supervised classification with grayscale value of information fission using Bayesian theory. Each 
extracted feature is converted to the grayscale to reduce the complexity of the data before implementing with 
Bayesian classification. The user interactively provides the training set of each class with accordance to the rule 
described in Section 5.2. Then, Bayesian theory is performed. This theory allows analyzing uniformly the 
uncertainties in the data, which were acquired from heterogeneous sources and non-commensurable features, also it 
easily incorporate additional prior information. In the general multisource case, a set of observations from n, n>1 
different classes is used to implement the relations between classes. Let xi, i є [1,n] denote the measure of a specific 



pixel from measurement class i. These relations are described by the probabilities. As a result, the posteriori 
probabilities are obtained for each of c information class ωj, j є [1,c]. These probabilities are used further in the 
classification that is assigning the label with the highest probability to each pixel of the data. The Bayesian probability 
theory states that: 
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where P(ωj|x1,x2,…xn) is known as the conditional or posterior probability that ωj is the correct class, given the 
observed data vector (x1,x2,…xn). P(x1,x2,…xn|ωj) is the likelihood probability. The prior probably of class ωj is 
denoted by P(ωj).  
 
5.1.3 Information Fusion  
 
In the third step, the AND and OR logical operators are applied to compute the final combined Bayesian membership 
value function. In case of optical fusion (or only reflectance combination of four bands); or multi-temporal SAR data 
fusion (or only three SAR signals combination), OR operator is used. Since the texture measures are fused, AND 
operator is used together with OR operator to join with original reflectance combination of four bands or combination 
of three SAR signals. Finally, the classification result is generated. 
 
5.2 Selection of Training Set and Test Set  
 
By analyzing the data for each class, training set was selected based on proportionate sampling method in order to 
train the Bayesian network, for larger classes more sample pixels were selected. To access the classification accuracy, 
the test set was selected from different set of regions of interest (ROIs) of the samples of training set. In this study, the 
selection of training and test sets were based on SPOT-5 satellite imagery as shown in Table 1. 
 
Table 1. Number of training and test set used in the experiments. 
Land cover class  Water bodies(Blue) Forests(Green) Fields(Yellow) Human Settlements(Red) Total Pixels 
Training set (pixels)  2,893 3,779 3,325 6,259 16,256 

Test set (pixels)  28,108 37,181 32,857 60,660 158,806 
 
5.3 Post Classification Smoothing and Accuracy Analysis 
 
Since the raw classified image appears noisy due to the isolated pixels spread in more homogeneous regions. Such 
pixels can be removed by making use of majority filter. In this study, median filter (5x5 window size) was applied to 
the classification results. To assess the classification performance, an overall accuracy and kappa coefficient were 
analyzed. 
 

6.  EXPERIMENTAL RESULTS AND DISCUSSION 
 
The data fusion experiments were classified into three major cases consist optical data fusion (case 1); multi-temporal 
SAR data fusion (case 2); and multi-temporal SAR data and optical data fusion (case 3). In each case, the textures 
combination was analyzed. The results are shown in Table 2 and Figure 3. 

     
(a) Reflectance. (b) Reflectance + Mean. (c) Reflectance +  

All Texture. 
(d) SAR signals +  

All Texture. 
(e) Reflectance and SAR 

signals + All Texture. 
Figure 3. Classification results of optical data fusion [(a), (b), and (c)]; multi-temporal SAR data fusion (d); and 

multi-temporal SAR data and optical data fusion; (e) with texture measures. 



Table 2. Overall classification accuracies and kappa coefficient of accuracy exhibited on the test set.  
Data Fusion 

Cases Number of files 
Before post classification After post classification 

Overall Kappa Overall Kappa 

1. Optical  

1.1 Reflectance 4 69.43% 0.5545 70.16% 0.5646 
1.2 Mean 4 75.47% 0.6465 75.77% 0.6465 
1.3 Reflectance + Mean 8 76.17% 0.6567 76.56% 0.6609 
1.3.1 Reflectance + Mean + Variance 12 74.58% 0.6327 75.70% 0.6482 
1.3.2 Reflectance + Mean + Correlation 12 73.86% 0.6207 73.81% 0.6192 
1.3.3 Reflectance + Mean + Homogeneity 12 76.12% 0.6548 75.98% 0.6521 
1.3.4 Reflectance + Mean + Contrast 12 75.72% 0.6495 76.09% 0.6538 
1.3.5 Reflectance + Mean + Dissimilarity 12 76.07% 0.6541 76.05% 0.6533 
1.3.6 Reflectance + Mean + Entropy 12 74.55% 0.6307 74.52% 0.6295 
1.4 Reflectance + Statistic Group 16 76.09% 0.6544 76.10% 0.6538 
1.5 Reflectance + Statistic + Contrast Groups 28 76.19% 0.6565 76.29% 0.6568 
1.6 Reflectance + All Texture 32 76.26% 0.6576 76.42% 0.6588 

2. Multi-temporal  
SAR  

2.1 SAR signals 3 75.87% 0.666 82.03% 0.7516 
2.2 SAR signals + Mean 6 77.20% 0.6824 82.54% 0.7575 
2.3 SAR signals + All Texture 24 77.24% 0.6829 82.63% 0.7587 

3. Multi-temporal  
SAR and Optical  

3.1 Reflectance and SAR signals 7 79.34% 0.7175 84.92% 0.7924 

3.2 
Reflectance + Mean and 
SAR signals + Mean 

14 81.73% 0.7578 86.29% 0.81 

3.3 
Reflectance + All Texture and 
SAR signals + All Texture 

56 82.75% 0.7632 86.83% 0.8149 

 
Table 3. The correlation coefficient between mean texture and other texture images of optical data 
Correlation coefficient  Band1 Band2 Band3 Band4 Average of 4 bands Overall accuracy  

Mean + Variance 0.92 0.88 0.96 0.88 0.91 73.96% 
Mean + Correlation 0.33 0.33 0.34 0.39 0.35 72.92% 
Mean + Homogeneity 0.22 0.21 0.23 0.20 0.22 75.92% 
Mean + Contrast 0.89 0.87 0.94 0.89 0.90 73.89% 
Mean + Dissimilarity 0.84 0.89 0.88 0.87 0.87 73.38% 
Mean + Entropy 0.41 0.38 0.39 0.37 0.39 74.00% 

 
Consider the results obtained from optical data fusion in Table 2 (case1) with Figure 3 (a, b, and c). Figure 3(a) 
presented the classification of reflectance images for all four bands combination. From visual interpretation of the 
result reveal that the forest class was misclassified as the water class in the bottom-center part of the image due to 
cloud cover from optical data.  It also showed the lowest overall accuracy (69.43%) as shown in case1.1. In addition, 
the texture parameters were analyzed as well. Particularly, the mean texture of reflectance combining all four bands in 
case1.2 showed 8% improvement over original reflectance combination. This improved classification result is present 
in Figure 3(b). The classified forest class was corrected from misclassified urban class in the bottom-right of the 
image. With this result, it was found that mean texture is a significant parameter for classification. Therefore, the 
combination of the original reflectance and mean texture was also investigated as shown in case1.3. However, the 
accuracy increased slightly in the range of 0.92%.  
 
In addition to this, other seven textures measures were analyzed. The data fusion between reflectance and mean 
texture with all the other textures measures of all four bands were experimented respectively, from 1.3.1 to 1.3.6 in 
Table 2. In all of these cases, lower accuracies were generated. It can be seen that the reliability or uncertainty of each 
data source should be considered before the classification of multisource data is applied. In this study, the correlation 
coefficient is used as the indicator for measuring the fusion quality. From the result in Table 3, the lowest correlation 
between the mean and homogeneity textures generated the highest overall accuracy of classification. It was found that 
the correlation coefficient closer to zero was preferred because the highly correlated textures show no variation 
between the classes of interest to be classified. This could be a drawback to the achievement of higher classification 
accuracy. Among texture measures, mean texture performed better than others because of the smooth effect of the 
image.  Moreover, the data fusion between reflectance and texture statistic group (including mean, variance and 
correlation) in Table 2 case1.4; the data fusion between reflectance with texture statistic group and contrast group 
(including homogeneity, contrast and dissimilarity) in case1.5; and the data fusion between reflectance and all 
textures in case 1.6 with Figure 3(c) were tested and found that their accuracies were slight increased.  
 
The classification results obtained from multi-temporal SAR data fusion in Table 2, case 2 and Figure 3(d) are 
discussed as follows. Table 2, case 2.1 shows classification result of the combination of SAR signals including 
(average backscattering coefficient, backscattering temporal variability and long-term coherence). The overall 
accuracy was 75.87%. From this result it can be found that the integration of a reliable feature extraction approaches 



based on the physics of multi-temporal SAR signals can solve a multi class problem with multi-temporal SAR data. 
According to the experiment of SAR signals with mean texture of each signal combination as shown in case 2.2, the 
results show 1.72% improvement than the case2.1. With this result, mean texture can be used to improve the 
classification accuracy for SAR data, mainly the mean texture can reduce speckle noise most effectively. From the 
comparison of the improvement percentage of mean texture combination between optical and multi-temporal SAR 
data, it was found that the changing range for multi-temporal SAR data is shorter. The reason is the use of 
multi-temporal filtering as described in Section 4.1, the noise of SAR data can be reduced. In case2.3 with Figure 3(d), 
the data fusion of SAR signals and all texture of each signals, outperformed with the 0.05% increased accuracy 
(overall accuracy: 77.24%). 
 
The classification results obtained from multi-temporal SAR data and optical data fusion in Table 2, case 3 and Figure 
3(e) are discussed as follows.  Table 2, case 3.1 shows classification result of the combination of SAR signals and 
reflectance of four bands. The overall accuracy was 79.34%. The experiment of data fusion with mean texture of each 
signal combination is shown in case 3.2. It represented 81.73%% overall accuracy, which was 2.92% improvement 
from case3.1. Finally in case3.3 with Figure 3(e), the data fusion of SAR signals and reflectance with all texture of 
each signals, outperformed the case3.2 with 1.23% increased accuracy (overall accuracy: 82.75%). The post 
classification filtering can improve the capabilities of classified results and accuracies. In Table 2, the results of all the 
cases after using post-classification smoothing yielded the better accuracies, increasing approximately 0.6% for 
optical data fusion, 6.8% for multi-temporal SAR data fusion and 5.5% for multi-temporal SAR data and optical data 
fusion respectively. In addition, it should be noted that the amount of smoothing depends on the size of the window.  
 
7.  CONCLUSION 
 
The classification method for multi-temporal SAR data and optical data fusion based on Bayesian theory has been 
proposed based on three processing steps including: 1) information fission by extracting the features on analyzing the 
physical properties of the multi-temporal SAR signals, reflectance data from optical data, and GLCM texture 
measures; 2) supervised classification with grayscale value of information fission based on Bayesian theory. This 
classifier learns the relationships between the classes and the maximum a posteriori (MAP) estimation assign the 
classes; 3) final combined Bayesian membership value function for each class was computed using combination of 
logical operators. Thus, the classified results were generated. The water, forest, fields and human settlements classes 
were studied. From the analysis of all the experimental results, it can be concluded that the feature integration of SAR 
signals including the average backscattering coefficient, backscattering temporal variability and long-term coherence 
are effective in modeling the series of multi-temporal SAR data. However, the classification using single source is 
still insufficient to carry out the high accuracy and good quality, due to the sensor based drawbacks such as the cloud 
cover of optical data; or the relief displacement and the speckle noise from SAR data. These effects should be 
accounted prior to the multisource classification procedures. GLCM texture measures were also analyzed. The results 
demonstrated that, using mean texture combination significantly improved the classification accuracies due to the 
influence of the smoothening effect. In addition, the study of correlation between mean and other textures shows that 
the use of highly correlated textures can lower the accuracy. However, the combination of various texture measures 
showed better results over single-set texture measure, because of their different and complementary information. The 
result suggests that the multi-temporal SAR and optical data fusion combining all texture images was slightly 
accurate than in the case of combining only with the mean texture. Post-classification filtering process can improve 
classification result considerably. Eventually, the classification using multisource data fusion outperformed single 
source fusion. This is mainly because appropriate extracted features can increased the capacities of the results and can 
reduce the complexity of functions in classification method. For the future development of this work, more different 
class combinations can be incorporated to see their discrimination in the classification. As a final remark, this 
classification method worth to be an operational tool for classification problems involving the land covers classes. 
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