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ABSTRACT: With the self-developing CMOS imaging sensors in the instrument Focal Plane Assembly (FPA), 

there is flexibility to trade-off for optimal performance of CMOS sensors through systematic studies. The criteria 

considered for the optimization are MTF and SNR, the CMOS imaging sensor considered in this work is with TDI 

(time delay integration) feature.  

Due to TDI sensor circuit complexity, fill factor (FF) will be decreased, the SNR is affected consequentially. 

Considering different fill factors, mirror-type and non-mirror-type pixel layouts are studied. Mirror type pixel layout 

may cause different responses between even and odd pixels. Analysis results based on the construction of the 

non-equal spacing signal via Whittaker-Shannon interpolation formula (Liu, 2010) show that the impacts of 

non-equal spacing in image signal are non-negligible. To avoid the impact on even and odd pixel output, change the 

layout to make up a symmetrical is one way, but will reduce the FF, Another way is to run pre-processing on ground 

before normal image processing chain. 

It is possible to reconstruct a band-limited signal with non-equal spacing sampled data. KOHLENBERG ‘s paper 

published in 1953[3] shows that a function lies in a frequency band (Wo, Wo+ W) is completely determined by its 

values at a properly chosen set of points of density 2W. The convolution kernel is derived for the spectrum of a 

multiply-periodic, amplitude modulated sequence of pulses. To find an approximation for re-sampling operation is 

the main study in this paper. 

 

1. INTRODUCTION 

 

It has been proposed that to increase the SNR without complicating the sensor circuit design, the even-odd sensor 

layout will be considered. However, the image processing systems available today does not take into count the 

strategy of the even-odd sampling layout. 

The rectangular shapes of pixel active area are studied in this analysis.
1
 As Figure 1 shows, the design explores two 

                                                           
1
 May not the same as the layout of FS-5 



possible options: mirror-type and non-mirror-type pixel layouts. The mirror-type layout is designed for higher FF 

(61%), but it lefts non-equal spacing issue between the even and odd pixels. The non-mirror–type one is designed for 

the concept of equal spacing sampling interval between the even and odd pixels and results in lower FF(54%) . 

Mirror–type pixel layout for PAN (pixel size is 10 um x 10 um)  

 

 

 

 

 

 

Non-mirror–type pixel layout for PAN (pixel size is 10 um x 10 um) 

 

 

 

 

 

 

 

Figure 1 

To figure out the even-odd effects, Whittaker-Shannon interpolation formula was applied to construct signals for 

even-odd series pixels from equal-spaced signals [2]. The simulated signals are then used to evaluate the possible 

deformation arose from conventional image re-sampling algorithms. To further explore the impacts of even-odd 

effects on the static MTF, an ideal PSF signal is introduced and sampled with even-odd series. The static MTF is 

about 6 x 10
-3

 difference affected in high frequency range [2].  

There are two possible approaches for ground image processing. A trade-off study is necessary. First of those is 

treating the even-odd sampling layout as the equal-spacing sampling scheme, and analyze the impacts of possible 

error introduced when applying the traditional re-sampling kernel. Secondly, deriving the perfect reconstruction 

algorithm and see if the computer resource required is manageable. 

The article focus on second approach, and is organized as follows: We begin with a review of bandlimited 

interpolation theroy , leading up to Kohlenberg’s resampling kernel for Reconstructing X(t) from non-uniform 

sampled data. Some test cases based on the simplified re-sampling kernel was demonstrated. Finally get conclusion. 

 

2.  THEORY OF BANDLIMITED INTERPOLATION 

According to the sampling theory, given a band-limited continuous signal X(t), it is possible to reconstruct the signal 

X(t) from the discrete sampled X(ti), where ti are equal spaced sampled ([1]). To reconstruct X(t) at any t, the sinc 

function is introduced according to sampling theory. For ti extending to non-equal spaced sampled cased were 

presented in the last study [3] also. 

 

2.1 Ideal Case (Equal Spacing, Uniform-Rate Sampling):  
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We review briefly the “analog interpretation” of sampling rate conversion [4] on which the present method is based. 

Suppose we have samples x(nTs) of a continuous absolutely integrable signal x(t), where t is time in seconds (real), n 

ranges over the integers, and Ts is the sampling period. We assume x(t) is bandlimited to ±W, where W =1/(2Ts) is 

the sampling rate. If X(ω) denotes the Fourier transform of x(t), i.e., X(ω) = ∫
∞

∞−

−
dtetx

tjω)( , then we assume 

X(ω) = 0 for |ω| ≥ 2πW. 

Consequently, Shannon’s sampling theorem gives us that x(t) can be uniquely reconstructed from the samples 

x(nTs) via )()()(ˆ ∑
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To resample x(t) at a new sampling rate 2W′s = 1/T′s, we need only evaluate Eq. (2.1a) at integer multiples of T′s. The 

sinc function can be seen as a hyperbolically weighted sine function with its zero at the origin canceled out. The name 

sinc function derives from its classical name as the sine cardinal (or cardinal sine) function. 

 

2.2 Key Words Non-Ideal Case ( Non-Equal Spacing): 

 

Periodic sampling, introduced by Kohlenberg [3], is well established which considers 

sampling sets as unions of cosets of one subgroup. The function is determined by its values at a set of points of 

density 2W, but the points consist of two similar groups with spacing 1/W, shifted with respect to each other. 

Kohlenberg’s paper derive the pth order sampling function, and prove that in the case of first order, sampling in 

equal spacing, the re-sampling kernel is sinc function, in the case of second order, can be applied to the unions of 

two subgroup, exactly applicable to the case of even and odd group. 

Kohlenberg’s formula:  
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the function is determined by its values at a set of points of density 2W, but the points consist of two 

similar groups with spacing 1/W, shifted with respect to each other. 

 

 

3.  RESAMPLING KERNAL & SPATIAL FINITE APPROXIMATIONS 
 

For that the reconstruction process reconstructs X(t) at any t by convoluting the sinc function & the discrete sampled 

X(ti), and both of them are infinite-supported in spatial domain, spatial finite approximations were introduced for 

image reconstruction, of them, the nearest neighbor, bi-linear, and 2-D cubic convolution approaches are commonly 

available in current image processing systems. ([6]) 



To achieve the best reconstruction results with limited calculation steps, 2-D cubic convolution approach is adopted 

in most systems. Though the cubic-spline approach performs marginally better then cubic convolution ([5]), its 

calculation relies on all the data available. To find X(t) at any t, the calculation use information from all X(ti). As a 

result, current image processing systems do not adopt the approach. Mainly, the computer resources required for this 

approach are beyond the manageable means.  

Cubic convolution is the 3-order polynomial simplification of sinc function, it is applicable with the assumption of 

input signal is equal spacing; Our goal is to find a suitable convolution kernel applicable for non-equal spacing case, 

KOHLENBERG ‘s 2
nd

 order reconstruction is quite complex (Eq. 2.2b), and requires summation of infinite series. 

For our application, we can rewrite Eq. 2.2b as Eq. 3.1 by setting W0 = 0, and r = 0: 
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Before deriving a spatial-limited convolution kernel, we study some test cases by using Eq. 3.1 and set band width 

W = 360 deg/ 2*2m, phase shift k = 0.5-0.04. The following figure describes the meaning of k and W. 

 

Figure 2. k and W in (Eq. 3.1) 

 

4.  TEST CASES 

 

Use Simulated Ideal PSF Signal 
 

To examine the resample kernel ( Eq. 3.1) for non-uniform sampling group, we take a simulated ideal PSF (Point 

Spread Function) as a test object. The experience comprises the following steps: 

Step 1: Use truncated Gaussian function to generate PSF signal, with array size: 60 x 1. Figure 3.2a shows the 

simulated signal f(t). 
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Figure 3.2a 

Step 2: Reconstruct the discrete PSF by using the following re-sampling kernel simplified from KOHLENBERG ‘s 

formula to validate the reconstruction process: 
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With W = 360 deg/ 2*2m, and k = 0.5-0.04 

By examining the difference between each reconstructed elements and Figure 3.2b shows the difference between 

them, the process is validated in the first stage. 

 

Step 3: Construct non-equal spacing sampled PSF by using the following equations, a non-equal sampling sequence 

result is obtained as shown in Figure 3.2c.   
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Step 4: Repeat the procedure in step 2, applying the (Eq. 4.1d) for the non-equal spacing sampled PSF signal from 

step 3, the difference between two signal is shown in figure 3.2d. f3 t( ) n f2 nW 
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Figure 3.2d: difference of non-equal spacing PSF signal and re-constructed non-equal spacing PSF signal 

 

5.  CONCLUSIONS & FUTURE WORKS  

This work demonstrates the applicability of re-sampling kernel for the non-equal spacing between even and odd 

sensor pixel arrays. With the test results shown in section 4.1, the error introduced by re-sampling kernel is quite 

small (0.04 DN). Our work proved this equation could be used for image resampling operation. 

In the near future, we are going to derive the simplified kernel with finite summation operations, more simulated 

non-equal spacing images will be generated for verification purpose. 
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