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ABSTRACT: A full-waveform lidar system is able to record received signal continually for analysis. As it provides 

more information than the conventional discreted lidar, the waveform analysis is a key process to extract the implied 

information. The objective of this study is to analyze the received waveform as well as its parameter extraction. The 

waveform parameters include position, amplitude, and echo width. This study selects Gaussian distribution as a 

symmetric function and Weibull distribution as an asymmetric function to decompose the return waveform into a 

series of components. In data preprocessing, we use Gaussian smoothing to reduce the noise effect and differentiation 

of waveform to extract the initial echo peak. Then, we employ Trust Region algorithm to solve the non-linear 

optimization problem for Gaussian and Weibull distributions. The waveform attributes such as peak, amplitude, and 

echo width are further extracted by the extracted components. Finally, we calculate the residuals, RMSE, R-square 

between raw waveform data and fitting function for quality assessment. The test site is a mountain area located in the 

central part of Taiwan. The experimental data was acquired by Leica ALS60 system and was recorded in the format of 

LAS1.3. This study compares two different functions in waveform decomposition. The result of Weibull distribution 

is better than Gaussian distribution as this asymmetry distribution is more suitable for lidar waveform. However, the 

latter is relatively simple and easy to implement in the waveform analysis. 

 

1.  INTRODUCTION 

 

Full-waveform (FWF) lidar is a new generation of airborne laser scanner which receives one dimensional 

continuous signal. It offers useful information about the structure of the target. Therefore, the analysis of return 

signal of FWF lidar and obtaining the implicit information is a very important issue. The discrete lidar only 

contains three dimensional coordinates and intensity of point. On the other hand, full-waveform lidar record 

continuous waveform for each pulse. Each returned signal represents the vertical characteristics of surface features. 

These returned signals may obtain several coefficients such as echo width, amplitude and etc. Hence, full waveform 

lidar may increase the capability of landcover classification as it contains more information than discrete lidar. 

 

Waveform decomposition is used to extract the peak and parameters of full waveform lidar. Several papers have 

been reported on this issue. The major steps of waveform decomposition include mathematic model selection, 

models fitting, parameters determination and evaluation. The mathematic model selection usually contains 

symmetric and asymmetric models. Gaussian distribution is the most common and easiest model (Wagner et al., 

2006). However, the FWF lidar is a natural asymmetric model due to the change of surface. Figure 1 illustrates the 

waveform pattern in different shape of surface (Jutzi and Stilla, 2006). Several asymmetrical models have been 

discussed (Chauve et al., 2007; Mallet et al., 2009), for example General Gaussian distribution, Log Normal 

distribution, Weibull distribution, Nakagami distribution and Burr distribution. Weibull distribution is the most 

common and relatively simple asymmetrical model (Coops and Hilker, 2007). Many studies have focused on the 

comparison of the decomposition results, relatively few studies have discussed about extracted parameters. Hence, 

the objective of this study is to compare the decomposition results as well as the waveform parameters.  

 

This study uses both symmetric and asymmetric functions to decompose full waveform lidar and extracts their 

waveform parameters. We select Gaussian distribution as a symmetric function and Weibull distribution as an 

asymmetric function. The quantitative evaluation analyzes the extracted parameters and fitting accuracies. Besides, 

we also compare the peak location between the proposed methods and original data. 

 



 
Figure 1. Surface characteristic and pulse form. (Jutzi and Stilla, 2006) 

 

2.  METHODOLOGY 

 

Figure 2 is the workflow of this study. There are four main parts. In data preprocessing, we use Gaussian smoothing 

to reduce the noise effect. Then, we extract the initial echo peak to determine the initial parameters. Then, we 

employ Trust Region algorithm to solve the fitting curve for Gaussian and Weibull distributions and obtain the 

waveform attributes such as peak, amplitude, echo width, scale factor and shape factor. Finally, we perform 

accuracy analysis between raw waveform data and fitting function for quality assessment. 

 

 
 

Figure2. Workflow 

 

2.1 Data Preprocessing  
 

There are two major steps in data preprocessing. First, we use Gaussian smoothing to remove the high frequency 

noise in the waveform (Hofton et al., 2000), as the serrated original data will affect the fitting results. Second, we 

eliminate the background noise which is smaller than the signal-to-noise level (Chauve, etc., 2007). 

 

2.2 Determine the Initial Parameters  

 

As waveform decomposition is a non-linear fitting problem, initial parameters may affect the results. The initial 

parameters include number of peak, initial peak and initial echo width. This study uses different waveforms to find 

the place of zero crossing (Wagner, etc., 2006). Then, we can obtain the number of peak and peak positions. For the 

echo width, it is the twice of the distance between the minimum and maximum points. Both symmetric and 

asymmetric functions use the same initial parameters. 



2.3 Model Fitting 

 

We select Gaussian distribution as a symmetric function (Chauve, etc., 2007) and Weibull distribution as an 

asymmetric function (Coops and Hilker, 2007) to fit the return waveform. The followings explain the two models in 

detail. Figure 3 compares the symmetric and asymmetric functions. The red line represents the symmetric function 

(Gaussian distribution) while the blue line represents the asymmetric function (Weibull distribution). This figure 

shows that the asymmetric function is more suitable for FWF lidar in some cases. 

 

 
Figure 3. Comparison of symmetric function and asymmetric function 

 

The Gaussian model is shown as equation 1. The waveform may decompose into many Gaussion models in 

different parameters. The additional amplitude is added for model fitting as in equation 2. Equation 3 is Weibull 

function. The extended model for decomposition is shown as equation 3. Notice that the time x are positive value in 

FWF lidar. 
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Where,  

 : time in ns 

 : receipted signal in V 

 : amplitude 

 : echo width 

 : scale parameter 

 : shape parameter 

 

Trust region algorithm is a method to deal with general bound-constrained optimization problems. We use this 

algorithm to calculate the coefficients of fitting models by minimizing the summed square of residuals (Lin et al., 

2010). At each iteration for minimizing ( ), the algorithm has an iterate   , a size of the trust region  , and a 

quadratic model (Lin et al., 2008).  
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2.4 Analysis and Quality Assessment  

 

We use three indexes to analyze the results. There are sum of squares due to error (SSE), root mean squared error 

(RMSE) and R-square. SSE is the sum of squares error due to the difference between the raw data and the fitting 



data. Equation (6) shows the detail of SSE. RMSE is the root mean squared error between raw data and fitting data. 

RMSE is shown as equation (7). R-Square is the coefficient of determination as shown as equation (8). The ideal 

value of SSE and RMSE is close to zero. R-square is between zero and one, the ideal value of R-square is close to 

one. 

 

    ∑ (    ̂ )
  

                  (6) 

     √
   

 
 √

∑ (    ̂ )
  

   

 
              (7) 

     
   

∑ (    ̅ )
  

   

                (8) 

 

Where, 

  : observed data 

 ̂ : reference value 

 : number of the observed data 

 ̅ : mean of the observed data 

 

3.  EXPERIMENTAL RESULTS 

 

3.1 Test Data 

 

The experimental data was acquired by Leica ALS60 system and was recorded in the format of LAS1.3. The test 

site is a mountain area located in the central part of Taiwan. We subset a small region contain ground and trees as 

shown in Figure4. Table 1 shows the numbers of return. We compare two different models in waveform 

decomposition and analyze the relationship between parameters. 

 

Table 1. Numbers of Return 

Numbers of Return Number 

Total returns 1981 

One return 1906 

Two returns 74 

Three returns 1 
 

 

   
Figure 4. Test Area (Left: Aerial Image, Middle: LIDAR point cloud with intensity, Right: LIDAR point cloud with 

elevation.) 

 

3.2 Waveform Parameters 

 

The empirical thresholds in data preprocessing are window size at 9, σ at 5 and background noise at 13. Table 2 

shows the difference between the 3D coordinates from original data and the proposed methods. The extracted 3-D 

position is similar to the original data. The airborne lidar acquired data vertically. Hence, the mean difference is in z 

direction is larger than X and Y directions. Moreover, the mean difference in vertical direction is about 0.3m as the 

time resolution is about 1ns.  

 

Table2. The difference between the raw data position and the extracted position (unit: meter) 

 Mean(X) Std.(X) Mean(Y) Std.(Y) Mean(Z) Std.(Z) 

Gaussian Model 0.0138 0.0116 0.0312 0.0244 0.3004 0.2338 

Weibull Model 0.0175 0.0085 0.0396 0.0154 0.3805 0.1478 

 

 



Figure 5 compares the waveform parameters. We find a high correlation between amplitude and intensity. Echo 

width is related to land cover. The greater the echo width, the smaller the amplitude, when the energy is dispersed. 

Dense trees are hard to penetrate and they usually have only one echo, so the echo width is smaller. In summary, 

land cover which is rough and complex has high echo width, and negative correlation with amplitude. In Weibull 

Model, the meaning of scale parameter is similar to the echo width in Gaussian Model. Shape parameter determines 

the asymmetry of the fitting curve. The value of shape parameter that is less than 3.44 is skewed to the left, and the 

one that is more than 3.44 is to the right. It is related to the slope of terrain. 

 

Gaussian Model 

  
amplitude echo width 

Weibull Model 

   
amplitude scale parameter shape parameter 
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Figure 5. Waveform Parameters 

 

3.3 Analysis and Quality Assessment 

 

Table 3 summaries the results of quality assessment. It shows that Gaussian Model extracts more peaks but Weibull 

Model’s fitting result is better. Figure 6 shows the histogram of RMSE. RMSE of Weibull model is smaller than 

Gaussian model. In other word, the fitting of Weibull Model is better than Gaussian Model. To compare their 

computation time, Gaussian is faster than Weibull because of the less unknown parameters. 

 

Table 3. Quality Assessment 

 Gaussian Model Weibull Model 

Raw data peaks 1923 1832 

Increased peaks 137 87 

SSE 255.0697 151.9003 

RMSE 0.9982 0.7703 

R-Square 0.9879 0.9927 
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Figure 6. Histogram of RMSE (Left: Gaussian, Right: Weibull) 

 

4.  CONCLUSIONS 

 

This study presented a procedure of waveform decomposition which includes data pre-processing, initial value 

determination, waveform fitting, analyzing and quality assessment. We have extracted the peak position as well as 

waveform parameters like amplitude, echo width, scale parameter, shape parameter, and XYZ location. The 

experimental results indicated that we can extract more peaks and get more information when compared to the 

original data. Moreover, the asymmetry distribution has better fitting results than symmetry distribution. Gaussian 

distribution need to extracts more peaks for returned signal. In brief, the result of Weibull distribution is better than 

Gaussian distribution as this asymmetry distribution is more suitable for lidar waveform. However, the latter is 

relatively simple and easy to implement in the waveform analysis. 
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