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ABSTRACT: Nowadays, different sensors and processing techniquesdpr®igital Elevation Models (DEMSs) for the same site,
which differ significantly with regard to their geometricaracteristics and accuracy. Each DEM contains intringiorerdue to the
primary data acquisition technology, the processing chaid the characteristics of the terrain. DEM fusion aimsvarcoming the
limitations of different DEMs by merging them in an intekligt way. In this paper we present a generic algorithmic agagrdor
fusing two arbitrary DEMs, using the framework of sparseespntations. We conduct extensive experiments with reill©from
different earth observation satellites to validate theppseed approach. Our evaluation shows that, together webwtely chosen
fusion weights, the fusion yields consistently better DEMgs to 30%), while blunders are reduced.

1 INTRODUCTION

Digital Elevations Models (DEMSs) are one of the most impottapes of geodata. They are needed in a large number otafiphs,

ranging from virtual globes and visualization to enginegrand environmental planning. DEMs of larger areas arellysgenerated
either by photogrammetric processing of aerial and staafliages, SAR (Synthetic Aperture Radar) interferomeirjaser scanning
(mainly from airborne platforms). Each sensing technology its own strengths and weaknesses, and even within dmelegy the

variations in DEM quality are large. DEMs are available dfiedent scales from tailor-made local models to national even global

coverage. We are primarily interested in large-scale natiand global products, whose resolution, accuracy, @haracteristics,
and homogeneity vary a lot. In most cases, the DEM producekdde users with information only on production technglagate of

acquisition, and resolution, but only with coarse accuraepsures that fail to capture the local variations in datdityu- sometimes
only a single global number. DEM fusion — and its necessaeyguuisite, fine-grained quality characterization of thguis — has
several benefits: improved accuracy, homogeneity and @ienmss, as well as fine-grained quality information forfithed product.

We deal only withQ%—D surfaces in regular grid format, which constitute thet vasjority of large-scale DEMs.

In this work we make two contributions:

» we develop a computationally efficient and flexible mathécahmethod for robust fusion @%-D surface models. The formu-
lation isgeneric and can be applied with any two input DEMs, independent os#resor technology and processing with which
they were created, making it useful for practical applmasi it takes into account both prior information about plale terrain
shapes (in the form of a dictionary), and the local accurddp@ inputs, controled by interpretable weights; and itgsothe
complete fusion as a clean, convex mathematical optimisgtioblem that can be solved to global optimality, and inclutthe
influence of the input DEMs is controlled by an interpretedgeof local fusion weights.

» we propose a data-driven method, which allows one to désted measures of DEM quality (and thus also fusion weigtuis)
each point or segment of a DEM, if no such information is al#é. To this end we use as input geomorphological chaisiitsr
of the terrain (slope, roughness), which are derived dirdadm the DEMSs, as well as optionally semantic informatsurch
as land-cover maps. Using existing high-quality groundhtDEMSs as reference, we learn regression functions nejdtie
available geomorphological characteristics to the DEMligyavhich then allow one to estimate the local quality of @n
DEM.

Surprisingly, there is a relatively small body of work abdata fusion for combining DEMs. Schultz et al. (1999) depedanethod-
ology to fuse two stereo-optical DEMs. Honikel (1999) appliwo techniques which take advantage of the complemeptaperties

of INSAR and stereo-optical DEMs. In (Damon, 2002) and (Gambal., 2003) the specific combination of INSAR and LIDAR
data is considered. Roth et al. (2002) describe a technigo@nhbine multi-source DEMs, based on the concept of heigbt maps.
Slatton et al. (2002) combine space-borne INSAR data freEfRS-1/2 platforms with multiple sets of airborne C-ban8AR data
using a multi-scale Kalman smoothing approach. Rao et @03gfill holes in an INSAR DEM with height data derived witleisto
optical matching. Kaab (2005) combined SRTM and ASTER BEW(fill the gaps of SRTM. Podobnikar (2005) introduces aduisi
technique based on the weighted sum of data sources withagpbological enhancement.



2 MATHEMATICAL FORMULATION OF FUSION

In the following, we describe the problem statement. Carstdo noisy measuremenis andy;, of a height fieldx, possibly at
different resolutions, e.g., low and high respectively. #§sume that the measurements have been produced fromgimabBiEM z
by the following model:

ypn=x+¢€p and y; = Lz + ¢, Q)

whereey,, ¢, are noise vectors andl is an unknown downsampling operator. In the case when therteasurementg andy;, are

at the same resolution, the operafoequals tol. The problem addressed in this paper is to fuse the noisyureragntsy; andyy,

in order to recover the original DEM. The hope is that the redundancy of the measurements wélt afbustness against noise and
result in an accurate estimation.of

Problem formulation. In order to achieve robustness without oversmoothing, vee fize fusion problem in the framework of sparse
representations. Sparse representations have been shosgult in state-of-the-art performance in image dengigitiad & Aharon,
2006) and super-resolution problems (Yang et al., 2008)ouroknowledge, their potential has not been fully exploitedemote
sensing problems. We work with local DEM patches to achi@rputational efficiency and to ensure a moderately sizeibdary
able to capture the variations in terrain shape. In whao¥al y;,, y;, andz thus denote local patches in the corresponding terrain
models in (1).

We assume that can be represented as a sparse linear combination of elefnemt a dictionaryD (i.e., local terrain shapes). The
dictionary is a basis set spanning the signal space andicatiypovercomplete, that is, it contains more elements tihe dimension

of the signal space. The elements of the dictionary areccaliems. We say that is sparsely represented overif x = Dag, where

ag € RY is a sparse coefficient vector with most entries zero and fesvwynon-zero entries (Figure 1)V denotes the size of the
dictionary whose atoms are organized as columm3.of he sparsity ofy, implies that already a few atoms are sufficient for obtaining
a good approximation of owing to the overcompleteness of the dictionary. Underrisesentation, the generative model (1) can
be re-written as

yn=_D ag+ep and y = LD ag+ ¢, (2
=Dy, =Dy

where we have defined a high-resolution dictionayy and a low-resolution dictionaryp;. Both dictionaries are coupled via the
relationD; := LDy,. The key observation in (2) is that tisame sparse coefficient vectar, is involved in both measured DEMg,
andy;. This leads to the following optimization problem in orderécover: from the measureg,, y;,.

Optimization problem. Assume for a moment thd?, and D, are available. We postpone the discussion of how to deterthizse
two dictionaries until the end of this section. Given the thictionariesD;, and D; and the measuremenjsandy;,, we would like to
recover the sparse coefficient vectar. Onceag has been computed, one can simply recavby computingDp o .

min | Dy — yil3+ | D — yal3+  7llell 3)
a€RN ——
low resolution high resolution sparsity term

The first two (data) terms correspond to the reconstructian ith respect to the observed DEMsandy;,. The third (regularisation)
term is associated with thé norm of the candidate solution vecter It is well known that the minimization of th& norm encourages
a sparse solution. Since the true coefficient vecatpthat we seek to recover is sparse, we would like our estinsikdion« to be
sparse as well. The parameter 0 controls the trade-off between data fitting and sparsisylitoice is discussed in Sec. 3.2.

The current formulation (3) implicitly assumes that bottad®rms have the same importance. However, this is notailpithe case
with DEMSs, since the two inputs have, at each point, diffesacturacy, depending on the sensing technology and pingedsis
therefore beneficial to include weights in the problem foliatian that will reflect such prior knowledge. We thereforedify the
optimization to include positive weight vectars, wy,:

Juin {|v/w, © (Diar — i3 + IVwy, © (Dne = yn)ll3 + 7llels. (4)

Here,® denotes component-wise multiplication, which offers télitly in allowing for individual weights at each locatiotsection
3.1 discusses the choice of these weights, which are ciiecialgood fusion.

Consistency among neighbouring patches. Solving (4) for each patch independently would result incklng artifacts along the
patch borders. To remedy this problem, we introduce ovdrédyeen patches and impose consistency between neigh@atiches.
More specifically, letP denote an operator that extracts the overlap region bettteeourrent working patch and the patches that
have been computed before. Furthermorg/jetlenote a vector that collects the values of the estimated DEle overlap region.
Minimizing the discrepancy PD,a — y,||3 between overlapping patches will impose consistency asdrersmooth transitions.
Introducing this term into (4), we reach the final formulatif our optimization problem:

min Vi, © (Do = w3 + IvVwy, @ (Dra — yn) I3
+B||PDha — y, |13 + 7|1, (5)

where we have introduced the parameter 0 to control the influence of the patch overlap factor. The chailf this parameter is
discussed in Sec. 3.2.
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Figure 1: Reconstruction of @x 9 patch (a) from three non-zero atoms (b)-(d), whiekg a1, as] is the sparse non-zero coefficient
vector.

Problem (5) is a convek!-regularized least-squares problem that can be solvedtmabbptimality. Since optimization problems
of this form constitute the main computational kernel of goessed sensing applications, there exists a wide sefeaftialgorithms
for their solution. Here, we us@rthogonal Matching Pursuit (OMP) (Mallat, 1998), because of its simplicity and compiotzal
efficiency. Problem (5) is solved for each patch with OMP. TP code reproducing the results in this paper is availabite f
download at (Elad, 2011). Details concerning the procedsime are discussed in Sec. 4.

Dictionary construction. The proposed framework requires dictionarigs D;, which must be acquired from training data. Differ-
ent learning techniques could be used to obtain a set of &tomsavailable high-quality DEMs. We have experimentedwdifferent
methods and found that the best results are obtained byesiraptiom sampling of patches from high resolution DEMspfedd by
clustering to remove very similar samples. Hence, for thestoiction ofD,,, we use a training set of high resolution DEMs of high
quality (which are of course different from the test DEMsdigethe evaluation). IfD; is of lower resolution, its atoms are obtained
by downsampling the corresponding atomdJp with bicubic interpolation. The preparation of the dicioies is off-line and needs
to be performed only once. Our empirical results in Sec. 4atestrate that the dictionaries constructed with the abovequlure are
well suited for successfully representing real terraircpas using very few (less than ten) atoms.

3 DEM QUALITY AND WEIGHTS

The DEM fusion method used in this research consists priynafitwo steps: quality evaluation and fusion. It is assurtieat the
input DEMs are co-registered into the same coordinate syside co-registration operates by minimizing 3D sepanatizetween a
template (master) DEM and a second search (slave) DEM, sgen@ Akca (2005). After co-registration, the low resolmiDEM
is resampled at the nodes of the high resolution DEM by bizirterpolation.

3.1 Fusion Weights

The fusion is accomplished with the support of weight mapsrtiflect the estimated relative accuracy of the two DEMsettyesingle
grid point. In some cases, DEM providers deliver such errapsnwhich can then be directly used for fusion. In most,sdsawvever,
these maps are either not available or not reliable, and #ights need to be estimated from the data. We have explorathaddiven
strategy to find the weights based on geomorphological cteniatics. Geometric properties of the terrain can bevadrdirectly from
a given DEM with local characteristics such as slope, aspeaghness, curvature, etc. We calculate two such parasndtgpe and
roughness, and analyze their relation to the co-registration redelua

Roughness refers to the height variation within a local meagghood and can be measured in different ways using, begstandard
deviation or fractal dimension. We have experimented wéthresal methods and found the entropy to perform best for arpgses.
The entropyE(z, y) is defined a¥(z,y) = > (p x logp), wherep are the probability densities of the heights, approximéted
histogram counts. Each output grid cell contains the egtk@bue of the surrounding x n neighborhood. We point out that the
residuals vary (increase or decrease) in a non-randonmripatiéh the two extracted geomorphological parameters. &dgenl the
mapping from a parameter to the expected residual (accmattyGaussian process regression. An example is showrgimr&2(b).
After the mapping, we adjust the expected residuals bylipsaaling the values betwe@and100, eventually yielding an accuracy
map. In the last step, we normalize the resulting accuragsrofboth input DEMs at each overlapping point. The reciprwalues
are the weights used for the fusion.

3.2 Fusion of DEMs

The fused DEM covers the common area available in all giveMBEAfter merging, a single DEM exists with the same grid $pac
as the DEM with the smallest grid spacing. According to thémamatical formulation of the fusion algorithm describe®ec. 2, we
have to set the overlapping parametgthe number of the non-zero atoms used in OMP, the patchisizéha number of patches in the
dictionary. In order to fine tune these parameters we pegdmumerous tests using artificial and real world datasetsvarcompared
for each test the produced results with available high guedference data. Best results have been achieved witlotlogiing set of
parameters. The overlap parametds set within the intervagl0.5, 1.5]. The number of non-zero atoms used in OMP is set between
and15. Below 7 the results are not reliable and abdvethe processing time increases while the results do not ivepmay further.
The minimum patch size should not be smaller tAan3 and it should not be bigger th&nx 9 because then the processing window
becomes too complicated and it is more difficult to find a $iétaombination of non-zero sparse atoms to reconstruét iyood”



Table 1: (a) Co-registration resultsg is theo a posteriori, and J; Ty, and T, are the three translations. (b-c) Statistical results ef th
ALOS-SPOT, ERS-SPOT and ALOS-ERS fusion for the completa.adll units are in meters.
@ (b) (©

Master Slave oo Tx Ty T, Input DEMs Fusion DEMs
L A 13.4 ] 18.6 6.4 1.0 MEAN RMSE | MAD MEAN RMSE | MAD
L E 8.9 -16.9 | 13.8 | 1.2 L-A -1.0 19.4 6.6 L-F1 -0.7 11.0 4.2
L S 8.9 16.6 3.2 2.9 L-S -0.8 15.5 4.4 L-F2 -1.2 9.7 2.7
L-E -1.2 10.7 3.1 L-F3 -0.7 10.9 3.1
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Figure 2: (a) Overlap area. (b) Absolute Z differences betwite Lidar and the SPOT DEM versus slope (mean every degrie)
blue line are the original values. The red line is the Ganssiam that we fit to the original values.

dictionary should contain atoms that describe every ptesgiomorphological structure, e.g., urban, forest, flatymainous areas.
This ensures that OMP can find a well fitting combination ofregdor every patch.

4 RESULTS AND DISCUSSION

In this section, we present the results of an experimentigation of the fusion methodology in three realistic DEMsion examples.
The test site is located at Thun, Switzerland, and chaiaetbby areas with different morphology and land cover. Wedubree
DEMs produced with image matching and SAR interferometigufe 2(a) shows the area of overlap. The validation wasoperéd

by comparing the input and the obtained DEMs after the fusiitim a high quality reference lidar DEM provided by Swisstop

SPOT Reference 3D DEM (S):30m grid spacing. Image acquisition date: 30.09.2002. It edpced using image matching by
Spotimage. The given absolute elevation accuracy for flabking terrain (slopec20%) is10m, for hilly terrain (20 %< slope<
40%) is 18 m and for the mountainous terrain (stop#0%) is30m. The Reference 3D DEM is delivered with a High Resolution
orthoimage (SPOT 5 sensor) witim ground pixel size.

ALOS/PALSAR DEM (A): 15m grid spacing. Image acquisition date: master 19.06.2666kve 04.08.2006. L-Band (c23 cm
wavelength). Itis produced by Sarmap SA. The overall aayuiss20m and it has been estimated using the Lidar DEM.

ERS DEM (E): 25m grid spacing. Image acquisition date: late autumn to esgmiing time, obtained from 1995 to 1998. C-Band (ca.
6cm wavelength). It is produced by Sarmap SA. The overall@ayis10.7m and it has been estimated using the Lidar DEM.

Lidar DEM (L): 2m grid spacing. The airborne lidar data were acquired foSthisstopo in 2000 with a mean density of 1-2 points
per n¥, depending on the terrain, and with first and last pulse oEmhrThe accuracyl (o) of the derived DEMs i$.5m and1.5m for
vegetated areas.

The ALOS and the ERS DEMs are delivered with an accuracy méye values on the accuracy map are derived according to the
formula:o = AF - (1 — coherence?)/(2 — coherence?), whereAF = R - (sin(0)/(B,, - 4w/\)), R is the rangef is the local incidence
angle,B,, is the baseline normal component ani the wavelength. According to our experience these acgunaps do not always
depict the real quality of the DEMs.

We tested the fusion method by fusing (a) the ALOS with the BBEGM which results to a final F1 DEM, and (b) the ERS with the
SPOT DEM which results to a final F2 DEM and (c) the ALOS with ERRS DEM which results to a final F3 DEM. The three DEMs
(S, A, and E) were co-registered to the reference DEM (L)I&dlja) shows the results of the co-registration. A dictigrat 800
patches of siz8 x 9 was generated with elements drawn randomly from the lidaviDEhe dictionary was filtered using a K-means
clustering algorithm with an eulidean distance measui@ah. The clustering reduced the dictionary to 720 patchesll thefusion
examples that we describe below we set the overlap paraméter, the number of the non-zeros atoms used in OMP was St to
and we used & x 9 patch size processing window.

After the fusion, error maps were computed by subtractiregnkividual DEMs (input and output) from the reference DEM énd
several statistics measures were computed. For this reagpid was generated for all the DEMs2an intervals according to the
spatial resolution of the reference DEM. The statisticduided in all the tables that follow are (a) the mean value (NMEADb) the
root mean square error (RMSE), and (c) the median absolutatam of the median value (MAD). All units are in meters. tAe end,
we performed a more detailed analysis of the results inioglab the slope, and roughness. The slope and the roughlasssg were
obtained by processing the lidar DEM. For the calculatiorsused & x 5 pixel window. The three slope classes are: Skopg°,
15°<Slope<45°, Slope-45°. The three roughness classes are: Roughiigssl 0<Roughness30, Roughness30. The roughness
is scaled in the intervd0, 100].

We have run the same tests, instead of using the sparse ertaitien mathematical framework of fusion, with a weightedan
average. The results were very similar, further supportiveg the major issue in fusion is the derivation of the weigfor each
individual input DEM point.

All the tests are done using a computer with Intel Core i7, @726 GHz CPU and 8 GB RAM using only one core, and unoptimized
Matlab code.



Table 2: Slope and roughness classes analysis.

Slope S<15°, 56.2% 15°<S<45°, 37.8% S>45°,6.0%
P MEAN | RMSE | MAD MEAN | RMSE | MAD MEAN | RMSE | MAD
L-A -0.6 11.1 4.1 -0.8 23.6 11 -4.8 39.6 194
L-E -0.9 5.6 1.6 1.1 12.7 6.7 3 24.7 12.1
L-S -0.2 6.3 3.1 -1.8 17.9 6.6 -13.3 39.9 14.1
L-F1 -0.1 54 3 -1.3 12.8 6.1 -7.4 26.2 12.9
L-F2 -0.6 5.2 15 -1.4 12.4 6.2 -7.2 24.8 17.2
L-F3 -0.9 55 1.6 1 12.7 6.6 2.9 24.7 12.1
Rough R<10, 17.2% 10<R<30, 25.9% R>30, 56.9%
91 vean | RMSE | MAD MEAN | RMSE | MAD MEAN | RMSE | MAD
L-A -1.6 9 0.2 0.3 8.5 4.2 -1.3 24.5 10.7
L-E -1.4 2.4 0.3 -0.8 45 1.9 0.9 13.8 6.4
L-S 1.5 3.6 0.9 -0.8 4.4 2.2 -2.9 20.2 6.1
L-F1 1.4 34 0.9 -0.5 4.2 2.1 -1.9 14.1 5.7
L-F2 -0.7 1.8 0 -0.5 3.8 1.5 -15 11.8 4.6
L-F3 -1.4 2.4 0.3 -0.8 4.5 1.9 0.9 13.8 6.4
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Figure 3: ALOS-SPOT fusion example. (a) Residuals betwbernLtand A DEM, (b) Residuals between the L and S DEM, (c)
Residuals between the L and F1 DEM. (d) SPOT orthoimage. ®lored 7 residuals are mapped in the interval [-30,30]. The bar
unit is meters.

4.1 Fusion ALOS-SPOT

A grid was generated for the input DEMsIdm intervals according to the spatial resolution of the ALOSND After resampling, the
input DEMs have a grid size &00 x 1167. The processing time required for the fusion Basminutes. The weights for the ALOS
DEM are calculated using the given accuracy map. For theizdion of the weights of the SPOT DEM a fairly good relatibipswas
found between the height differences map of the two input BEKd the slope. In Figure 2(b) the used weighting functiahdavn.

It is a sum of §' degree Gaussian functions that we fit to the original valssgupeak fitting. In Tables 1(b) and 1(c), we can see
that compared to the ALOS DEM, the fusion achieved up to 43%ravement in RMSE while maintaining the resolution1ém.
Similarly, as compared to the SPOT DEM, the fusion improvegdresolution td 5m from 30m while improving the RMSE by 29%.
Figure 3 shows a detail of thg difference images of the three DEMs. The error of the ALOS DEMot introduced into the final
DEM F1 which supports the choice of the weights. The resdlth® slope and roughness assessment are presented in ta2Tab
We notice that the fusion leads to an improvement esped@ilgnedium and high slopes and less for low slopes. The saimavbm
applies to the three roughness classes but to a lesser degrefer the slope.

4.2 Fusion ERS-SPOT

A grid was generated for the input DEMs Zim intervals according to the spatial resolution of ERS. Afessampling, the input
DEMSs have a grid size of80 x 700. The processing time required for the fusion wiad minutes. The weights for the ERS DEM
are calculated using the given accuracy map. The weighth&8POT DEM are calculated as described above. In Tablésahcb
1(c), we can see that as compared to the ERS DEM, the techaaieved up to 10% improvement in RMSE while maintaining
the resolution o25m. Similarly, as compared to the SPOT DEM, the technique avgd the resolution ta@5m from 30m while
improving the RMSE by 37%. Figure 4 shows a detail of thdifference images of the three DEMs. The errors of the ERS DRiEM
not introduced into the final DEM F2. The results of the slopé eoughness assessment are presented in the Table 2. Tyss0f
these results conforms to the analysis for ALOS-SPOT fuditere the improvement by fusion is larger for medium and Isigipes
and roughness than for low ones.

(© (d)

Figure 4: ERS-SPOT fusion example. (a) Residuals betweeh #md E DEM, (b) Residuals between the L and S DEM, (c) Refgdua
between the L and F2 DEM. (d) SPOT Orthoimage. The coldfe@siduals are mapped in the interval [-30,30]. The bar @it i
meters.



(d)
Figure 5: ALOS-ERS fusion example. (a) Residuals betweeh iind A DEM, (b) Residuals between the L and E DEM, (c) Res&dua
between the L and F3 DEM. (d) SPOT orthoimage. The coléfreelsiduals are mapped in the interval [-30,30]. The bar gnitéters.

(b)

4.3 Fusion ALOS-ERS

A grid was generated for the input DEMsI&m intervals according to the spatial resolution of the ALOBND After resampling, the
input DEMs have a grid size &00 x 1167. The processing time required for the fusion Basminutes. The weights are calculated
using the given accuracy maps, given the fact that the weagktinversely proportional to the standard deviationeslin Tables 1(b)
and 1(c), we can see that as compared to the ALOS DEM, theitpehachieved up to 45% improvement in RMSE while maintagnin
the resolution ofism. Similarly, as compared to the ERS DEM, the technique ivgaidhe resolution ta5m from 25m while not
improving at all the RMSE. Figure 5 shows a detail of thdifference images of the three DEMs. In the ALOS DEM a largsbder
exists which does not appear in the ALOS accuracy map, soblimgler is introduced into the final result F3. The resultthefslope
and roughness assessment are presented in the Table 2. oHeredium and large slopes / roughness there is no impoveoyent
fusion while for low values the improvement is significant.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a methodology for DEM fusion based on spapsesentations. First, we have introduced a mathemdtarak-
work for the fusion. Next, we have proposed a way to calculaeweight maps for the input DEMs when no prior informatien i
available. We provide experimental evidence using real BEMt indicates the advantages of the proposed appro&chtedtexami-
nation of the post-fusion DEMs. Strategies that take acgebf some complementary factors like the edginess, tlieclawer or the
special attributes of the DEMs production technology deelyi to be realized in the near future for the calculatiorhaf weight maps.
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