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ABSTRACT: Nowadays, different sensors and processing techniques provide Digital Elevation Models (DEMs) for the same site,
which differ significantly with regard to their geometric characteristics and accuracy. Each DEM contains intrinsic errors due to the
primary data acquisition technology, the processing chain, and the characteristics of the terrain. DEM fusion aims at overcoming the
limitations of different DEMs by merging them in an intelligent way. In this paper we present a generic algorithmic approach for
fusing two arbitrary DEMs, using the framework of sparse representations. We conduct extensive experiments with real DEMs from
different earth observation satellites to validate the proposed approach. Our evaluation shows that, together with adequately chosen
fusion weights, the fusion yields consistently better DEMs(up to 30%), while blunders are reduced.

1 INTRODUCTION

Digital Elevations Models (DEMs) are one of the most important types of geodata. They are needed in a large number of applications,
ranging from virtual globes and visualization to engineering and environmental planning. DEMs of larger areas are usually generated
either by photogrammetric processing of aerial and satellite images, SAR (Synthetic Aperture Radar) interferometry,or laser scanning
(mainly from airborne platforms). Each sensing technologyhas its own strengths and weaknesses, and even within one technology the
variations in DEM quality are large. DEMs are available at different scales from tailor-made local models to national and even global
coverage. We are primarily interested in large-scale national and global products, whose resolution, accuracy, errorcharacteristics,
and homogeneity vary a lot. In most cases, the DEM producers provide users with information only on production technology, date of
acquisition, and resolution, but only with coarse accuracymeasures that fail to capture the local variations in data quality – sometimes
only a single global number. DEM fusion – and its necessary prerequisite, fine-grained quality characterization of the inputs – has
several benefits: improved accuracy, homogeneity and completeness, as well as fine-grained quality information for thefinal product.
We deal only with2 1

2
-D surfaces in regular grid format, which constitute the vast majority of large-scale DEMs.

In this work we make two contributions:

• we develop a computationally efficient and flexible mathematical method for robust fusion of2 1
2
-D surface models. The formu-

lation isgeneric and can be applied with any two input DEMs, independent of thesensor technology and processing with which
they were created, making it useful for practical applications; it takes into account both prior information about plausible terrain
shapes (in the form of a dictionary), and the local accuracy of the inputs, controled by interpretable weights; and it poses the
complete fusion as a clean, convex mathematical optimisation problem that can be solved to global optimality, and in which the
influence of the input DEMs is controlled by an interpretableset of local fusion weights.

• we propose a data-driven method, which allows one to derivelocal measures of DEM quality (and thus also fusion weights)for
each point or segment of a DEM, if no such information is available. To this end we use as input geomorphological characteristics
of the terrain (slope, roughness), which are derived directly from the DEMs, as well as optionally semantic informationsuch
as land-cover maps. Using existing high-quality ground-truth DEMs as reference, we learn regression functions relating the
available geomorphological characteristics to the DEM quality, which then allow one to estimate the local quality of a new
DEM.

Surprisingly, there is a relatively small body of work aboutdata fusion for combining DEMs. Schultz et al. (1999) develop a method-
ology to fuse two stereo-optical DEMs. Honikel (1999) applies two techniques which take advantage of the complementaryproperties
of InSAR and stereo-optical DEMs. In (Damon, 2002) and (Gamba et al., 2003) the specific combination of InSAR and LIDAR
data is considered. Roth et al. (2002) describe a technique to combine multi-source DEMs, based on the concept of height error maps.
Slatton et al. (2002) combine space-borne InSAR data from the ERS-1/2 platforms with multiple sets of airborne C-band InSAR data
using a multi-scale Kalman smoothing approach. Rao et al. (2003) fill holes in an InSAR DEM with height data derived with stereo
optical matching. Kääb (2005) combined SRTM and ASTER DEMs to fill the gaps of SRTM. Podobnikar (2005) introduces a fusion
technique based on the weighted sum of data sources with geomorphological enhancement.



2 MATHEMATICAL FORMULATION OF FUSION

In the following, we describe the problem statement. Consider two noisy measurementsyl andyh of a height fieldx, possibly at
different resolutions, e.g., low and high respectively. Weassume that the measurements have been produced from the original DEMx
by the following model:

yh = x+ ǫh and yl = Lx+ ǫl, (1)

whereǫh, ǫl are noise vectors andL is an unknown downsampling operator. In the case when the twomeasurementsyl andyh are
at the same resolution, the operatorL equals to1. The problem addressed in this paper is to fuse the noisy measurementsyl andyh
in order to recover the original DEMx. The hope is that the redundancy of the measurements will offer robustness against noise and
result in an accurate estimation ofx.

Problem formulation. In order to achieve robustness without oversmoothing, we pose the fusion problem in the framework of sparse
representations. Sparse representations have been shown to result in state-of-the-art performance in image denoising (Elad & Aharon,
2006) and super-resolution problems (Yang et al., 2008). Toour knowledge, their potential has not been fully exploitedin remote
sensing problems. We work with local DEM patches to achieve computational efficiency and to ensure a moderately sized dictionary
able to capture the variations in terrain shape. In what follows,yh, yl, andx thus denote local patches in the corresponding terrain
models in (1).
We assume thatx can be represented as a sparse linear combination of elements from a dictionaryD (i.e., local terrain shapes). The
dictionary is a basis set spanning the signal space and is typically overcomplete, that is, it contains more elements than the dimension
of the signal space. The elements of the dictionary are called atoms. We say thatx is sparsely represented overD if x = Dα0, where
α0 ∈ R

N is a sparse coefficient vector with most entries zero and veryfew non-zero entries (Figure 1).N denotes the size of the
dictionary whose atoms are organized as columns ofD. The sparsity ofα0 implies that already a few atoms are sufficient for obtaining
a good approximation ofx owing to the overcompleteness of the dictionary. Under thisrepresentation, the generative model (1) can
be re-written as

yh = D
︸︷︷︸

:=Dh

α0 + ǫh and yl = LD
︸︷︷︸

:=Dl

α0 + ǫl, (2)

where we have defined a high-resolution dictionaryDh and a low-resolution dictionaryDl. Both dictionaries are coupled via the
relationDl := LDh. The key observation in (2) is that thesame sparse coefficient vectorα0 is involved in both measured DEMsyh
andyl. This leads to the following optimization problem in order to recoverx from the measuredyl, yh.

Optimization problem. Assume for a moment thatDh andDl are available. We postpone the discussion of how to determine these
two dictionaries until the end of this section. Given the twodictionariesDh andDl and the measurementsyl andyh, we would like to
recover the sparse coefficient vectorα0. Onceα0 has been computed, one can simply recoverx by computingDhα0.

min
α∈RN

‖Dlα− yl‖22
︸ ︷︷ ︸

low resolution

+ ‖Dhα− yh‖22
︸ ︷︷ ︸

high resolution

+ τ‖α‖1
︸ ︷︷ ︸

sparsity term

(3)

The first two (data) terms correspond to the reconstruction error with respect to the observed DEMsyl andyh. The third (regularisation)
term is associated with theℓ1 norm of the candidate solution vectorα. It is well known that the minimization of theℓ1 norm encourages
a sparse solution. Since the true coefficient vectorα0 that we seek to recover is sparse, we would like our estimatedsolutionα to be
sparse as well. The parameterτ >0 controls the trade-off between data fitting and sparsity; its choice is discussed in Sec. 3.2.
The current formulation (3) implicitly assumes that both data terms have the same importance. However, this is not typically the case
with DEMs, since the two inputs have, at each point, different accuracy, depending on the sensing technology and processing. It is
therefore beneficial to include weights in the problem formulation that will reflect such prior knowledge. We therefore modify the
optimization to include positive weight vectorswl, wh:

min
α∈RN

‖
√
wl ⊙ (Dlα− yl)‖22 + ‖

√
wh ⊙ (Dhα− yh)‖22 + τ‖α‖1. (4)

Here,⊙ denotes component-wise multiplication, which offers flexibility in allowing for individual weights at each location.Section
3.1 discusses the choice of these weights, which are crucialfor a good fusion.

Consistency among neighbouring patches.Solving (4) for each patch independently would result in blocking artifacts along the
patch borders. To remedy this problem, we introduce overlapbetween patches and impose consistency between neighbouring patches.
More specifically, letP denote an operator that extracts the overlap region betweenthe current working patch and the patches that
have been computed before. Furthermore letyp denote a vector that collects the values of the estimated DEMin the overlap region.
Minimizing the discrepancy‖PDhα − yp‖22 between overlapping patches will impose consistency and ensure smooth transitions.
Introducing this term into (4), we reach the final formulation of our optimization problem:

min
α∈RN

‖
√
wl ⊙ (Dlα− yl)‖22 + ‖

√
wh ⊙ (Dhα− yh)‖22

+β‖PDhα− yp‖22 + τ‖α‖1, (5)

where we have introduced the parameterβ > 0 to control the influence of the patch overlap factor. The choice of this parameter is
discussed in Sec. 3.2.
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Figure 1: Reconstruction of a9 × 9 patch (a) from three non-zero atoms (b)-(d), where[a0, a1, a2] is the sparse non-zero coefficient
vector.

Problem (5) is a convexℓ1-regularized least-squares problem that can be solved to global optimality. Since optimization problems
of this form constitute the main computational kernel of compressed sensing applications, there exists a wide selection of algorithms
for their solution. Here, we useOrthogonal Matching Pursuit (OMP) (Mallat, 1998), because of its simplicity and computational
efficiency. Problem (5) is solved for each patch with OMP. TheOMP code reproducing the results in this paper is available for
download at (Elad, 2011). Details concerning the processing time are discussed in Sec. 4.

Dictionary construction. The proposed framework requires dictionariesDh, Dl, which must be acquired from training data. Differ-
ent learning techniques could be used to obtain a set of atomsfrom available high-quality DEMs. We have experimented with different
methods and found that the best results are obtained by simple random sampling of patches from high resolution DEMs, followed by
clustering to remove very similar samples. Hence, for the construction ofDh, we use a training set of high resolution DEMs of high
quality (which are of course different from the test DEMs used in the evaluation). IfDl is of lower resolution, its atoms are obtained
by downsampling the corresponding atoms inDh with bicubic interpolation. The preparation of the dictionaries is off-line and needs
to be performed only once. Our empirical results in Sec. 4 demonstrate that the dictionaries constructed with the above procedure are
well suited for successfully representing real terrain patches using very few (less than ten) atoms.

3 DEM QUALITY AND WEIGHTS

The DEM fusion method used in this research consists primarily of two steps: quality evaluation and fusion. It is assumedthat the
input DEMs are co-registered into the same coordinate system. The co-registration operates by minimizing 3D separations between a
template (master) DEM and a second search (slave) DEM, see Gruen & Akca (2005). After co-registration, the low resolution DEM
is resampled at the nodes of the high resolution DEM by bicubic interpolation.

3.1 Fusion Weights

The fusion is accomplished with the support of weight maps that reflect the estimated relative accuracy of the two DEMs at every single
grid point. In some cases, DEM providers deliver such error maps, which can then be directly used for fusion. In most, cases, however,
these maps are either not available or not reliable, and the weights need to be estimated from the data. We have explored a data-driven
strategy to find the weights based on geomorphological characteristics. Geometric properties of the terrain can be derived directly from
a given DEM with local characteristics such as slope, aspect, roughness, curvature, etc. We calculate two such parameters, slope and
roughness, and analyze their relation to the co-registration residuals.
Roughness refers to the height variation within a local neighborhood and can be measured in different ways using, e.g., the standard
deviation or fractal dimension. We have experimented with several methods and found the entropy to perform best for our purposes.
The entropyE(x, y) is defined asE(x, y) =

∑
(p × log p), wherep are the probability densities of the heights, approximatedby

histogram counts. Each output grid cell contains the entropy value of the surroundingn × n neighborhood. We point out that the
residuals vary (increase or decrease) in a non-random pattern with the two extracted geomorphological parameters. We learn the
mapping from a parameter to the expected residual (accuracy) with Gaussian process regression. An example is shown in Figure 2(b).
After the mapping, we adjust the expected residuals by linearly scaling the values between0 and100, eventually yielding an accuracy
map. In the last step, we normalize the resulting accuracy maps of both input DEMs at each overlapping point. The reciprocal values
are the weights used for the fusion.

3.2 Fusion of DEMs

The fused DEM covers the common area available in all given DEMs. After merging, a single DEM exists with the same grid spacing
as the DEM with the smallest grid spacing. According to the mathematical formulation of the fusion algorithm described in Sec. 2, we
have to set the overlapping parameterβ, the number of the non-zero atoms used in OMP, the patch size and the number of patches in the
dictionary. In order to fine tune these parameters we performed numerous tests using artificial and real world datasets and we compared
for each test the produced results with available high quality reference data. Best results have been achieved with the following set of
parameters. The overlap parameterβ is set within the interval[0.5, 1.5]. The number of non-zero atoms used in OMP is set between7
and15. Below7 the results are not reliable and above15 the processing time increases while the results do not improve any further.
The minimum patch size should not be smaller than3× 3 and it should not be bigger than9× 9 because then the processing window
becomes too complicated and it is more difficult to find a suitable combination of non-zero sparse atoms to reconstruct it.A “good”



Table 1: (a) Co-registration results.σ0 is theσ a posteriori, and Tx, Ty, and Tz are the three translations. (b-c) Statistical results of the
ALOS-SPOT, ERS-SPOT and ALOS-ERS fusion for the complete area. All units are in meters.

(a)

Master Slave σ0 Tx Ty Tz

L A 13.4 18.6 6.4 1.0
L E 8.9 -16.9 13.8 1.2
L S 8.9 16.6 3.2 2.9

(b)

Input DEMs
MEAN RMSE MAD

L-A -1.0 19.4 6.6
L-S -0.8 15.5 4.4
L-E -1.2 10.7 3.1

(c)

Fusion DEMs
MEAN RMSE MAD

L-F1 -0.7 11.0 4.2
L-F2 -1.2 9.7 2.7
L-F3 -0.7 10.9 3.1

(a) ALOS DEM
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Figure 2: (a) Overlap area. (b) Absolute Z differences between the Lidar and the SPOT DEM versus slope (mean every degree). The
blue line are the original values. The red line is the Gaussians sum that we fit to the original values.

dictionary should contain atoms that describe every possible geomorphological structure, e.g., urban, forest, flat, mountainous areas.
This ensures that OMP can find a well fitting combination of atoms for every patch.

4 RESULTS AND DISCUSSION

In this section, we present the results of an experimental validation of the fusion methodology in three realistic DEM fusion examples.
The test site is located at Thun, Switzerland, and characterized by areas with different morphology and land cover. We used three
DEMs produced with image matching and SAR interferometry. Figure 2(a) shows the area of overlap. The validation was performed
by comparing the input and the obtained DEMs after the fusionwith a high quality reference lidar DEM provided by Swisstopo.
SPOT Reference 3D DEM (S):30m grid spacing. Image acquisition date: 30.09.2002. It is produced using image matching by
SpotImage. The given absolute elevation accuracy for flat orrolling terrain (slope≤20%) is10m, for hilly terrain (20 %≤ slope≤
40%) is 18 m and for the mountainous terrain (slope> 40%) is30m. The Reference 3D DEM is delivered with a High Resolution
orthoimage (SPOT 5 sensor) with5m ground pixel size.
ALOS/PALSAR DEM (A): 15m grid spacing. Image acquisition date: master 19.06.2006 and slave 04.08.2006. L-Band (ca.23 cm
wavelength). It is produced by Sarmap SA. The overall accuracy is20m and it has been estimated using the Lidar DEM.
ERS DEM (E): 25m grid spacing. Image acquisition date: late autumn to earlyspring time, obtained from 1995 to 1998. C-Band (ca.
6cm wavelength). It is produced by Sarmap SA. The overall accuracy is10.7m and it has been estimated using the Lidar DEM.
Lidar DEM (L): 2m grid spacing. The airborne lidar data were acquired for theSwisstopo in 2000 with a mean density of 1-2 points
per m2, depending on the terrain, and with first and last pulse recorded. The accuracy (1 σ) of the derived DEMs is0.5m and1.5m for
vegetated areas.
The ALOS and the ERS DEMs are delivered with an accuracy map. The values on the accuracy map are derived according to the
formula:σ = AF · (1− coherence2)/(2− coherence2), whereAF = R · (sin(θ)/(Bn ·4π/λ)), R is the range,θ is the local incidence
angle,Bn is the baseline normal component andλ is the wavelength. According to our experience these accuracy maps do not always
depict the real quality of the DEMs.
We tested the fusion method by fusing (a) the ALOS with the SPOT DEM which results to a final F1 DEM, and (b) the ERS with the
SPOT DEM which results to a final F2 DEM and (c) the ALOS with theERS DEM which results to a final F3 DEM. The three DEMs
(S, A, and E) were co-registered to the reference DEM (L). Table 1(a) shows the results of the co-registration. A dictionary of 800
patches of size9 × 9 was generated with elements drawn randomly from the lidar DEM. The dictionary was filtered using a K-means
clustering algorithm with an eulidean distance measure of10 m. The clustering reduced the dictionary to 720 patches. In all the fusion
examples that we describe below we set the overlap parameterβ to 1, the number of the non-zeros atoms used in OMP was set to10
and we used a9× 9 patch size processing window.
After the fusion, error maps were computed by subtracting the individual DEMs (input and output) from the reference DEM (L) and
several statistics measures were computed. For this reason, a grid was generated for all the DEMs at2 m intervals according to the
spatial resolution of the reference DEM. The statistics included in all the tables that follow are (a) the mean value (MEAN), (b) the
root mean square error (RMSE), and (c) the median absolute deviation of the median value (MAD). All units are in meters. Atthe end,
we performed a more detailed analysis of the results in relation to the slope, and roughness. The slope and the roughness classes were
obtained by processing the lidar DEM. For the calculations we used a5 × 5 pixel window. The three slope classes are: Slope≤15°,
15°<Slope≤45°, Slope>45°. The three roughness classes are: Roughness≤10, 10<Roughness≤30, Roughness>30. The roughness
is scaled in the interval[0, 100].
We have run the same tests, instead of using the sparse representation mathematical framework of fusion, with a weightedmean
average. The results were very similar, further supportingthat the major issue in fusion is the derivation of the weights for each
individual input DEM point.
All the tests are done using a computer with Intel Core i7, Q720, 1.6 GHz CPU and 8 GB RAM using only one core, and unoptimized
Matlab code.



Table 2: Slope and roughness classes analysis.
Slope S≤15°, 56.2% 15°<S≤45°, 37.8% S>45°, 6.0%

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-A -0.6 11.1 4.1 -0.8 23.6 11 -4.8 39.6 19.4
L-E -0.9 5.6 1.6 1.1 12.7 6.7 3 24.7 12.1
L-S -0.2 6.3 3.1 -1.8 17.9 6.6 -13.3 39.9 14.1
L-F1 -0.1 5.4 3 -1.3 12.8 6.1 -7.4 26.2 12.9
L-F2 -0.6 5.2 1.5 -1.4 12.4 6.2 -7.2 24.8 17.2
L-F3 -0.9 5.5 1.6 1 12.7 6.6 2.9 24.7 12.1

Rough.
R≤10, 17.2% 10<R≤30, 25.9% R>30, 56.9%

MEAN RMSE MAD MEAN RMSE MAD MEAN RMSE MAD

L-A -1.6 9 0.2 0.3 8.5 4.2 -1.3 24.5 10.7
L-E -1.4 2.4 0.3 -0.8 4.5 1.9 0.9 13.8 6.4
L-S 1.5 3.6 0.9 -0.8 4.4 2.2 -2.9 20.2 6.1
L-F1 1.4 3.4 0.9 -0.5 4.2 2.1 -1.9 14.1 5.7
L-F2 -0.7 1.8 0 -0.5 3.8 1.5 -1.5 11.8 4.6
L-F3 -1.4 2.4 0.3 -0.8 4.5 1.9 0.9 13.8 6.4
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Figure 3: ALOS-SPOT fusion example. (a) Residuals between the L and A DEM, (b) Residuals between the L and S DEM, (c)
Residuals between the L and F1 DEM. (d) SPOT orthoimage. The coloredZ residuals are mapped in the interval [-30,30]. The bar
unit is meters.

4.1 Fusion ALOS-SPOT

A grid was generated for the input DEMs at15m intervals according to the spatial resolution of the ALOS DEM. After resampling, the
input DEMs have a grid size of800× 1167. The processing time required for the fusion was3.8 minutes. The weights for the ALOS
DEM are calculated using the given accuracy map. For the calculation of the weights of the SPOT DEM a fairly good relationship was
found between the height differences map of the two input DEMs and the slope. In Figure 2(b) the used weighting function isshown.
It is a sum of 6th degree Gaussian functions that we fit to the original values using peak fitting. In Tables 1(b) and 1(c), we can see
that compared to the ALOS DEM, the fusion achieved up to 43% improvement in RMSE while maintaining the resolution of15m.
Similarly, as compared to the SPOT DEM, the fusion improved the resolution to15m from30m while improving the RMSE by 29%.
Figure 3 shows a detail of theZ difference images of the three DEMs. The error of the ALOS DEMis not introduced into the final
DEM F1 which supports the choice of the weights. The results of the slope and roughness assessment are presented in the Table 2.
We notice that the fusion leads to an improvement especiallyfor medium and high slopes and less for low slopes. The same behavior
applies to the three roughness classes but to a lesser degreethan for the slope.

4.2 Fusion ERS-SPOT

A grid was generated for the input DEMs at25m intervals according to the spatial resolution of ERS. After resampling, the input
DEMs have a grid size of480 × 700. The processing time required for the fusion was1.3 minutes. The weights for the ERS DEM
are calculated using the given accuracy map. The weights forthe SPOT DEM are calculated as described above. In Tables 1(b) and
1(c), we can see that as compared to the ERS DEM, the techniqueachieved up to 10% improvement in RMSE while maintaining
the resolution of25m. Similarly, as compared to the SPOT DEM, the technique improved the resolution to25m from 30m while
improving the RMSE by 37%. Figure 4 shows a detail of theZ difference images of the three DEMs. The errors of the ERS DEMare
not introduced into the final DEM F2. The results of the slope and roughness assessment are presented in the Table 2. The analysis of
these results conforms to the analysis for ALOS-SPOT fusion. Here the improvement by fusion is larger for medium and highslopes
and roughness than for low ones.
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Figure 4: ERS-SPOT fusion example. (a) Residuals between the L and E DEM, (b) Residuals between the L and S DEM, (c) Residuals
between the L and F2 DEM. (d) SPOT Orthoimage. The coloredZ residuals are mapped in the interval [-30,30]. The bar unit is
meters.
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Figure 5: ALOS-ERS fusion example. (a) Residuals between the L and A DEM, (b) Residuals between the L and E DEM, (c) Residuals
between the L and F3 DEM. (d) SPOT orthoimage. The coloredZ residuals are mapped in the interval [-30,30]. The bar unit is meters.

4.3 Fusion ALOS-ERS

A grid was generated for the input DEMs at15m intervals according to the spatial resolution of the ALOS DEM. After resampling, the
input DEMs have a grid size of800× 1167. The processing time required for the fusion was3.8 minutes. The weights are calculated
using the given accuracy maps, given the fact that the weights are inversely proportional to the standard deviation values. In Tables 1(b)
and 1(c), we can see that as compared to the ALOS DEM, the technique achieved up to 45% improvement in RMSE while maintaining
the resolution of15m. Similarly, as compared to the ERS DEM, the technique improved the resolution to15m from 25m while not
improving at all the RMSE. Figure 5 shows a detail of theZ difference images of the three DEMs. In the ALOS DEM a large blunder
exists which does not appear in the ALOS accuracy map, so thisblunder is introduced into the final result F3. The results ofthe slope
and roughness assessment are presented in the Table 2. Here for medium and large slopes / roughness there is no impovementby
fusion while for low values the improvement is significant.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a methodology for DEM fusion based on sparserepresentations. First, we have introduced a mathematicalframe-
work for the fusion. Next, we have proposed a way to calculatethe weight maps for the input DEMs when no prior information is
available. We provide experimental evidence using real DEMs that indicates the advantages of the proposed approach after the exami-
nation of the post-fusion DEMs. Strategies that take advantage of some complementary factors like the edginess, the land cover or the
special attributes of the DEMs production technology are likely to be realized in the near future for the calculation of the weight maps.
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