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ABSTRACT: We propose a method for remotely sensed multi-band image classification using member-
ship function. Our aim is to classify the image as classes with use-defined number from a prior knowledge
of remote sensing, and every point is finally labeled as the class with the highest value of membership
function. This classification is reduced to a minimization problem of a functional whose arguments are
membership functions. The minimization problem is solved via iteration with the initial value from the
classification result of fuzzy C-means. Our method refines the result of fuzzy C-means and produces a
smoother and less cluttered classification. Two novelties compared with traditional membership methods
are in this paper. First, unconstrained functional is used. Constraints are added in the literature since
membership functions need to be positive and with sum equal to one, which is avoided here by variable
substitution. Second, intermediate variables are introduced so that a big complicated functional is sep-
arated as three relatively easy functionals that can be solved with fast speed. The experimental results
from Google Map and Quickbird images show the validity of this approach.

1. INTRODUCTION

Image classification is an important topic in remote sensing applications, and a variety of classification
methods for remotely sensed images have been studied (Lu and Weng, 2007). Roughly speaking, classifi-
cation is to label every pixel into a certain class according to some criteria. Although various classification
methods have already been proposed, it is still hard to find an algorithm suitable for all purposes. Thus
developing a fast, robust and accurate classification technique remains a challenging task.

In this paper we develop a classification algorithm in which human interference is as little as possible.
We only need to specify the number of classes to be classified, which is determined by the purpose of
classification and a prior knowledge of the region in the satellite image. Our method uses membership
function: for every point, its membership function, which is the probability that it belongs to each class,
is calculated. The point is finally labeled as the class with the highest value of membership function.
That is to say, our method is an unsupervised classification method based on membership function.

Traditional unsupervised classification methods, such as K-Means and IsoData, only consider the digital
number (DN) value of a pixel, and neglect its geometric property (e.g. neighboring pixels). Such methods
tend to produce a cluttered classification result. In real applications, we often place more importance on
the macro patterns in the classification result, and not on isolated or scattered points. For example, we
may wish to determine that a particular region lies in a body of water, without distracting our attention
to the ships in the region. In this case, we may view the pixels representing the ships as “outliers” that
are not of essential importance. The purpose of this paper is to propose a method that refines traditional
methods to produce a smoother and less cluttered classification.



In our algorithm, geometric information is taken into account. We want the result to have some kind of
smoothness; for instance isolated point(s) should be wiped out as much as possible in the final result.
We will conduct the classification by proposing an energy functional and solving its minimizer. The
minimization process is conducted via iteration: the result of traditional unsupervised classification is
used as our initial value, membership functions is then calculated by iteration, and final membership
functions represent the classification result.

The rest of the paper is organized as follows. Section 2 describes some background knowledge. Section 3
states the methodology. Section 4 is the result and discussion part. Section 5 concludes the paper.

2. BACKGROUND

2.1 Membership functions

A membership function (Zadeh, 1965) Mi(x) represents the possibility that the point x belongs to the
Class i, i = 1, . . . , K. Thus, membership functions should follow the constraints below:

0 ≤ Mi ≤ 1 and
K∑

i=1

Mi = 1. (1)

Apparently, the degree of freedom of Mi is K − 1, which means Mi can be represented by K − 1 free
variables ui, i = 1, · · · ,K − 1. We now describe a way connecting Mi and ui.

For instance, suppose K = 8. Then 8 membership functions can be expressed as

M1 = cos2(u1) cos2(u2) cos2(u4),
M2 = cos2(u1) cos2(u2) sin2(u4),
M3 = cos2(u1) sin2(u2) cos2(u5),
M4 = cos2(u1) sin2(u2) sin2(u5),
M5 = sin2(u1) cos2(u3) cos2(u6),
M6 = sin2(u1) cos2(u3) sin2(u6),
M7 = sin2(u1) sin2(u3) cos2(u7),
M8 = sin2(u1) sin2(u3) sin2(u7), (2)

where ui is free variable. Via this method, {Mi} satisfy the membership constraints (1) automatically.
In this way, to find the constrained solution of Mi is reduced to find the solution of free variable ui.

2.2 Fuzzy C-Means

We now introduce Fuzzy C-Means (FCM), as this method will be used to obtain the initial value of our
classification.

FCM (Bezdek, 1981) is an unsupervised classification method. As an improvement of K-Means, FCM
uses an idea of “soft” classification. Given K classes to be classified, for every pixel, FCM computes its
membership functions; then the pixel is labeled as the class with highest membership function. To be
more specific, FCM minimizes the following C-Means functional:

J =
N∑

i=1

K∑
j=1

Mm
ij ∥xi − cj∥2,

where xi is the i-th data point in the d-dim space, cj is cluster center of Class j, Mij is the membership
function of xi in Class j, m is any real number greater than 1, K is the number of classes to be classified,
and N is total number of data. Here ∥ · ∥ can be any form of norm.

This minimization problem can be solved by iteration. In k-th iteration, the membership Mij and class



center cj can be expressed by

M
(k)
ij =

1
K∑

n=1

( ∥xi − cj∥
∥xi − cn∥

)2/(m−1)
and c

(k)
j =

N∑
i=1

Mm
ij · xi

N∑
i=1

Mm
ij

.

This iteration will terminate when the stopping criteria are satisfied.

In this paper we use the code downloaded from Fuzzy Clustering and Data Analysis Toolbox (available
at http://www.fmt.vein.hu/softcomp/fclusttoolbox) to implement FCM.

Figure 1a and 1b shows an example of FCM classification. Figure 1a is an input image downloaded from
Google Map, and Figure 1b is its FCM result. Here the image is classified as 8 classes, where 8 is specified
according to user’s requirement. We can see that the result is cluttered in some places, especially in the
plantation area. This is caused by the fact that FCM is a point-wise approach, which only considers the
pixel values and neglects geometric information. In our algorithm, the FCM result is used as an initial
value for iteration, and we will refine it to produce a smoother and less cluttered classification.

3. METHODOLOGY

In this section our aim is to classify a d-band image I(x) in domain Ω as K classes. Without loss of
generality, we suppose K = 8.

3.1 Proposed functional

At beginning, we first propose the following functional:

E({Mi}, {ci}) =
K∑

i=1

∫
Ω

|∇Mi| + λ

K∑
i=1

∫
Ω

∥I − ci∥2 · Mi, (3)

where {Mi} are the membership function; ci is a d-dim vector representing mean value in Class i, and
the component of ci is the mean value of Class i in each band; and λ is a balancing parameter.

The functional (3) could be explained as follows. The first term is a regularization term, guaranteeing
the smoothness of the membership function. The second term is a fidelity term, guaranteeing that the
difference of pixel values is controlled in each class.

Please note that functional (3) is a constrained functional as Mi should satisfy membership constraints
(1). Therefore we introduce free variable ui in (2) to substitute Mi, and change (3) to be an unconstrained
functional:

E({ui}, {ci}) =
K−1∑
j=1

∫
Ω

|∇uj | + λ
K∑

i=1

∫
Ω

di · Mi(u1, · · · , uK−1) (4)

where di = ∥I − ci∥2. Note that the first term on the right hand side is a regularization term for free
variables.

For the sake of easy computation, the functional (4) is further turned into:

E({ui}, {vi}, {ci}) =
∫

Ω

K−1∑
j=1

|∇vj | +
1
2θ

∫
Ω

K−1∑
j=1

|vj − uj |2 + λ

K∑
i=1

∫
Ω

di · Mi, (5)

where vi is an intermediate variable; θ is another balancing parameter.

The purpose of introducing vi is that we can apply operator/variable splitting method to (5). The term∫
Ω

∑K−1
j=1 |vj − uj |2 makes sure the closeness between ui and vj .



As functional (5) is non-convex, we can only achieve a local minimum. Thus, we use the result of FCM
as the initial value for iteration to guarantee that our result is near to a reasonable solution.

3.2 Detailed steps

To minimize (5), we separate the problem into 3 sub-problems.

When updating one parameter, all other parameters are considered constants during the iteration.

In each iteration,

1. Update vi：

This is a standard ROF model (Rudin et al., 1992). This model can be solved using various methods.

2. Update ci：

ci =

∫
Ω

I · Mi∫
Ω

Mi
;

3. Update ui：

ui can be obtained by the Euler-Lagrange equation with respect to u, which can be reduced to a series
of triangular equations:

1
θ
(uj − vj) − λ sin(2uj)rj = 0, (j = 1, · · · ,K − 1),

where

r1 = d1 cos2(u2) cos2(u4) + d2 cos2(u2) sin2(u4)
+d3 sin2(u2) cos2(u5) + d4 sin2(u2) sin2(u5)
−d5 cos2(u3) cos2(u6) − d6 cos2(u3) sin2(u6)
−d7 sin2(u3) cos2(u7) − d8 sin2(u3) sin2(u7)

r2 = d1 cos2(u1) cos2(u4) + d2 cos2(u1) sin2(u4)
−d3 cos2(u1) cos2(u5) − d4 cos2(u1) sin2(u5)

r3 = d5 sin2(u1) cos2(u6) + d6 sin2(u1) sin2(u6)
−d7 sin2(u1) cos2(u7) − d8 sin2(u1) sin2(u7)

r4 = (d1 − d2) cos2(u1) cos2(u2),
r5 = (d3 − d4) cos2(u1) sin2(u2),
r6 = (d5 − d6) sin2(u1) cos2(u3),
r7 = (d7 − d8) sin2(u1) sin2(u3).

This kind of triangular equation can be easily solved by Newton’s method.

The iteration terminates when stopping condition is satisfied. From experience, iteration number 30 is
sufficiently good for most cases.

4. RESULT AND DISCUSSION

We use two examples to show the results. Example 1 is a RGB image downloaded from Google Map.
Example 2 is a quickbird 4-band image downloaded from http://glcf.umiacs.umd.edu/data/quickbird/.

Figure 1 shows the classification result of Example 1. Figure 1a is the input image; Figure 1b is the
classification result of 8 classed using FCM, which is used as the initial value for our algorithm. Figure
1c is our result. Parameter used is the algorithm is: λ = 0.0005; θ = 0.1; number of iteration = 30;
processing time is 37 seconds for a CPU of 1.83 GHz with 3G RAM.



(a) Input image (b) FCM result (8 classes)

(c) Result of our algorithm

Figure 1: Classification result of a Google Map image

Figure 2 shows the classification result of Example 2. Figure 2a is the input image (color display: red:
band 3; green: band 2 and blue: band 1); Figure 2b is the classification result of 8 classed using FCM,
which is used as the initial value for our algorithm. Figure 2c is our result. Parameter used is the
algorithm is: λ = 0.0005; θ = 0.1; number of iteration = 30; processing time is 33 seconds for a CPU of
1.83 GHz with 3G RAM.

In general the results are satisfactory. Our method refines the result of fuzzy C-means and produces a
smoother and less cluttered classification. Several small areas are combined, with inside isolated points
moved.

We should point out two things worth mentioning in our algorithm. First, the solution of our algorithm
is a local minimum, not a global one; which means that our result is only a refinement of the FCM result
(i.e., the two results are close). For instance, if FCM provides totally wrong classification, it is hard to
correct via our algorithm. This can be observed from Figure 2. There is a main road across the image
from upper left to the center. Unfortunately the road is misclassified as two classes (yellow and green)
in the FCM, and it still remains two classes in the final result.

Second, in our examples, the number of classes is set as K = 8, which is in the category of 2n. This is a
relatively easy case to covert K membership functions to K − 1 free variables. If K does not belong to



(a) Input image (b) FCM result (8 classes) (c) Result of our algorithm

Figure 2: Classification result of a Quickbird image

that category, for example, K = 5, we can use the same idea to express the 5 membership functions by

M1 = cos2(u1) cos2(u2) cos2(u4),
M2 = cos2(u1) cos2(u2) sin2(u4),
M3 = cos2(u1) sin2(u2),
M4 = sin2(u1) cos2(u3),
M5 = sin2(u1) sin2(u3)

with 4 free variables. Here we use the idea of dichotomy. That means that if we want to separate one
class into two classes, we only need to add one free variable using the fact that the sum of cosine squared
and sine squared equals one.

5. CONCLUSION

We have proposed a method for remotely sensed multi-band image classification using membership func-
tion. This is done via minimizing an energy functional. The minimization problem is solved via iteration
with the initial value from the classification result of fuzzy C-means. Our method refines the result of
fuzzy C-means and produces a smoother and less cluttered classification. The experimental results from
Google Map and Quickbird images show the validity of this approach.

Several improvements can be done in the future. For instance, to make the classification more accurate,
we can convert this algorithm to a supervised or guided classification, which will use training samples
instead of FCM result as initial values.
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