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ABSTRACT: Synthetic aperture radar (SAR) provides a remote sensing technique to explore the ground truth in all 

weather conditions. However, interpretation of SAR images is difficult because of the effects of speckle signals. In 

this paper, we decompose a given SAR image into two parts: low frequency and high frequency. For the low 

frequency part, the piecewise-constant approximation implemented with a level set approach is used with modeling 

of sharp edges. The high frequency part, capturing global intensity inhomogeneities, is illustrated by minimizing the 
energy defined in the model proposed by Mumford and Shah. Based on the fact that the segmented regions are 

homogeneous and presented as regional constants, the energy defined by the segmented regions and their 

corresponding regional boundaries is minimized, such that the relationships between the defined energy and the 

implicit functions can be transformed into the relationships between the implicit functions and time. By implementing 

the proposed algorithm in terms of finite differences, this method offers an efficient and stable approach for 

determining a numerical solution. By increasing iterations and preselected level values, the implicit functions evolve 

close to the regional boundaries based on the energy minimization. In this paper, the additive and multiplicative 

models are used to evaluate their performance in depressing the effects of speckle signals appearing in a given SAR 

image. 

 

1. INTRODUCTION 
 

Synthetic aperture radar (SAR) provides a remote sensing technique to explore the ground truth in all weather 

conditions. Interpreting SAR images plays an important part in analyzing the Earth’s surface characteristics in the 

imaged areas. Segmenting SAR images into a series of homogeneous sub-regions is a fundamental step in SAR image 

interpretation. However, the effects of speckle signals make the interpretation of SAR satellite images difficult. For 

SAR image interpretation, a consideration of the effects of speckle signals is necessary to develop SAR segmentation 

algorithms. 

Removing the effects of speckle signals is a critical step in SAR image segmentation. In general, there are two 

ways to deal with the problems caused by speckle signals in currently developed SAR segmentation algorithms. One 

way is to use the developed filters to depress the effects of speckle signals and then apply segmentation algorithms to 

a given SAR image to segment the entire image. The filters developed for removing the effects of speckle signals are 
based on averaging pixels within a homogeneous region (Lee, 2009), or applying an improved edge detector to filter 

out the speckle signals (Germain, 2000). These developed filters depend heavily on the architecture of the analyzing 

windows (Chan, 2000). With the filtered SAR images, several approaches employing different neural network 

algorithms have been proposed to segment the given SAR images. Karvonen applied pulse-coupled networks to 

segment the Baltic Sea ice SAR images to study the properties of sea ice (Karvonen, 2004). Davison has employed 

the multilayer perceptron network to classify ERS-1 SAR imagery for crop discrimination (Davison, 1994). These 

researchers have successfully implemented different neural network algorithms to classify a given SAR image into 

several groups to study the information hidden in the classified results. The accuracy of the classified results is 

heavily dependent upon the properties of the selected training data sets and the structures of the developed filters. 

However, the filtered SAR images usually have problems related to the bias in the filtered data, blurring and 

suppressing highly reflective points (Lee, 2009). Another approach based on the assumption that the segmented 

regions can be approximated by those segmented regional averages has been recently proposed (Osher, 2002). 
Segmentation algorithms implemented with the curve evolution and level sets approaches have been 

successfully applied to optical images and thermal infrared images (Osher, 2002; Huang, 2010; Kass, 1988). The 

idea of an evolving curve can be traced back to the late 1980s. The concept of an evolving curve is that an initial 

curve will automatically move to the regional boundaries according to the principle of minimum energy. In 1988, 

Kass and Witkin proposed the snake theory, where extracting regional boundaries with the iteration approach is 



based on minimizing the energy contained in the image (Chesnaud, 2001). The classical snake algorithm was 

implemented and applied to segment SAR images (Ayed, 2005). There are existing limitations for the snake 

algorithm: the topology of the evolving curves will be affected during evolution, and the procedures of 

segmentation depend on parameterization (Yang, 2009). Although Ayed et al. proposed segmenting the entire SAR 

image into a number of N sub-regions by applying active curve evolutions through level sets, a new approach has 

been developed to handle the topological changes of the evolving curves (Ayed, 2005; Yang, 2009; Chung, 2009). 

In this paper, the additive and multiplicative models for a given SAR image are evaluated. In the field of 
image processing, the issue of how to extract meaningful information from a given image can be formulated as an 

inverse problem: given an image f, find an approximation u such that u is close to f. Often, u is an image containing 

homogeneous sub-regions and boundaries. Most image models assume that there is an additive relation between f 

and u: f = u + v, where v is texture information. In general, the component v is ignored. Similarly, the multiplicative 

model is especially suited for SAR image interpretation: f = uv. However, the component v is important in some 

cases, if it is employed to represent texture information. Texture can be defined as a repeated pattern of small-scale 

details (Vese and Osher, 2003). Similarly, the noise is a random pattern of small-scale details. Both types of 

patterns (noise and texture) can be modeled by oscillatory functions taking both positive and negative values, with a 

mean of zero (Meyer, 2002). 

This paper employs the multilayer level set approach to decompose a given SAR image into u and v, 

according to the additive and multiplicative models. The remainder of this paper is organized as follows. In the next 

section, the minimal partition problem proposed by Mumford and Shah is introduced (Mumford and Shah, 1988). 
In Section III, a short review of the additive model and multiplicative models is given and the multilayer level set 

approach is derived for SAR images. Section IV illustrates the processed results by employing the multilayer level 

set approach on real SAR images. Finally, some conclusions and related discussions are provided in Section V. 

 

2.  MATHEMATICAL MODEL OF MUMFORD AND SHAH 

 

The goal of image segmentation is to partition the image into a series of sub-regions such that each sub-region is 

homogeneous. Mumford and Shah modeled the segmentation problem in computer vision. Le and Vese have 

proved that with few modifications, the Mumford and Shah Models can effectively depress the additive and 

multiplicative noise in the segmentation problems (Le and Vese, 2007). The definition is given as follows: given an 

image
0

I , let R:I
0

 be a given bounded image function and, from the point of view of approximation theory, 

find a decomposition  i i
C  and an optimal piecewise-smooth approximation I of 

0
I , such that I varies 

smoothly within each i and I varies discontinuously and rapidly across the boundaries C between different 

sub-regions [17]. To solve this problem, Mumford and Shah proposed minimizing the energy function. Its 
mathematical model is given as follows: 
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where C  is the total length of the arcs making up C, and   and   are fixed parameters to weight the different 

terms shown in (1). In (1), the first term represents the difference between the approximation I and the original 

image 
0

I , the second term ensures that I is varying smoothly in each
i

 , and the last term controls the length of the 

boundaries, so that they are as short as possible (Goodman, 1975). Let I be a piecewise-constant function, i.e., 

i
cI  in each 

i
 . Then, (1) can be simply represented as: 
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Usually, the constant 
i

c  in 
i

  can be represented as the average value in 
i

 . The mathematical proofs for the 

existence and regularity of minimizing (2) can be found in the work of Goodman (Goodman, 1975). The algorithm 

proposed by Mumford and Shah apparently works effectively on SAR images. The constant 
i

c is defined as follows: 
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3. ADDITIVE AND MULTIPLICATIVE MODELS  

 

Segmenting SAR images can usually be done by applying clustering algorithms on the filtered images. Otherwise, 

curve evolution based on the model developed by Mumford and Shah is used to segment those unfiltered SAR 

images. In this section, the additive and multiplicative models based on the multilayer level set approach are given 
separately. The multilayer level set approach is a type of unsupervised classification method, and employs curve 

evolution based on the model developed by Mumford and Shah (Mumford and Shah, 1988). 

 

3.1 Background of Additive and Multiplicative Models 

 



Meyer has proven that the additive model developed by Rudin, Osher and Fatemi will remove the texture information 

if the tuning parameter   is small enough (Meyer, 2002). Meyer proposed the use of a space of functions to define 

the texture as: 
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where 
1

g  and 
2

g )( 2RL . Vese and Osher have proposed an additive model by introducing (4), and the model can 

be shown as follows (Vese and Osher, 2003): 
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By minimizing the defined energy model in (5) with respect to u, 
1

g , and 
2

g , the Euler-Lagrange equations are 

illustrated as follows: 
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Using the finite difference approach to find the solutions of (13), (14) and (15), the numerical results are illustrated in 

Fig. 1 by employing parameters 1.0 and 100  in 100 iterations. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Meanwhile, the multiplicative model is suitable for depressing the effects of speckle signals (Lee, 1980). Rudin 

proposed a multiplicative model ( uvu 0 ) based on two constraints (Rudin, 2003): 

dxdyuudxdy  0
 and                          (9) 

  22
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such that the model is defined as: 

  uuF )( .                                      (11) 

With two constraints and by minimizing (11), the Euler-Lagrange equation is shown as follows: 
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3.2 ADDITIVE AND MULTIPLICATIVE MODELS BASED ON THE MULTILAYER LEVEL SET APPROACH  

 

Fig. 1. The numerical result using the additive model developed by Vese and Osher, with 1.0 , 100 , 

and 100 iterations. 



 

In the multilayer approach, let 0I  be an SAR image and the two level set functions partition a given image into 

sub-regions with distinct levels  
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respectively. The relationships between the sub-regions in the approximation and the functions 
1
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Extending (2), the energy function for the additive model is defined as: 

  













1

1 2

2

i,00

1,1

1,, 1

2

,0
-IlogIlog),(

m

i

nm

ji ji
dxvcdxvccE 

 

  













1

1 4

2

j0,0

1

1 3

2

ni,0
-Ilog-Ilog

n

j

m

i
dxvcdxvc 

                             (13) 

 








 dxvcdxvc
n

j 6

2

0,00

1

1 5

2

jm,0
-Ilog-Ilog    

 
 

 dxvcdxvcdxvc
9

2

nm,08

2

m,007

2

n0,0
-Ilog-Ilog-Ilog 

 

    




n

j j

m

i i
dxkxHdxlH

1 21 1
))(()( 

. 

Similarly, the energy function for the multiplicative model is defined as: 
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The terms 
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Although the Heaviside function has a different form, this paper employs the form proposed by Vese, and is defined 

as (Vese, 2003): 
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where   is a parameter such that the function has a different zero argument while z is located in the interval 

  , ; otherwise, the function will be zero. The sub-regional constant, 
ij

c , is the constant specified in the 

sub-region 
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  such that pixel values are 
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c  in the sub-region, and is in general defined as (Chung, 2009): 
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However, other special terms, such as 0,ic , nic , , jc ,0 , jmc , , 0,0c , nc ,0 , 0,mc , and nmc , , can be defined as being 



slightly modified (10) and their mathematical representations can be found in the work of Chung (Chung, 2009). 

 

4. NUMERICAL RESULTS 

 

In this paper, an ERS-2 SAR image with a resolution of 12.5 m by 12.5 m was employed to evaluate the performances 

of the algorithm. The SAR image was collected on March 31st, 2007, and its geographic location was in the north of 

Taiwan. The parameters 1dt , 1 , and 256256015.0   were used in this paper. To implement the level 

set approach, two initial level set functions were given with the forms 5)()(),( 220
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yyxxyx . In Fig. 2, the processed results of the additive model shown in (13) are 

given. In Fig. 3, the processed results of the multiplicative model shown in (14) are given. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

5. CONCLUSIONS 

 

 

 

Fig. 2. The processed results of the multiplicative model shown in Eq. (13). 

 

 

Fig. 3. The processed results of the multiplicative model shown in Eq. (14). 



From the experimental results, the multilayer level set method provides a numerically stable algorithm. For a given 

SAR image, it requires only a few iterations to reach convergence without considering the effects of the chosen 

parameters. The segmented image provides a final image based on a few regional constants and the segmented regional 

boundaries can be built with those constants. The additive and multiplicative models are used to evaluate their 

performance in depressing the effects of speckle signals shown in a given SAR image. From the processed results, the 

proposed approach can efficiently segment any given SAR image, allowing further image interpretation to reveal the 

ground truth in the imaged area. 
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