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Abstract : Although conventional classification methods based on the use of spectral information may provide acceptable results 
on low and medium resolution images, usually they have shown poor results when applied for high resolution images.  Many 
researchers have shown that contextual information is a rich source of information for improvement of the classification accuracy. 
In this paper, texture quantization as an example of producing valuable features for the purpose of object discrimination from 
IKONOS pan-sharpened data of suburb areas has been investigated.  
Several statistical features such as the mean, variance and median as well as the features originated from  
the gray level run-lengths matrix have been generated. In addition, autocorrelation and geo-statistical methods have been 
employed for production of the new features. Results of different tests have shown that by proper use and combination of texture-
based features in the classification process, up to 20 percent improvement in the accuracy may be achieved 
Keywords: Classification, Texture 
 
 
1. Introduction 
 

Classification is the most common method of extracting information from remotely sensed data. In conventional 
classification methods only spectral data are used. High resolution images have more spatial information but do 
not have a high spectral resolution, so using conventional classification methods seems to be ineffective. To 
improve the classification accuracy, spatial information, which is a reach source of useful information needs 
careful consideration. Texture quantization is an effective approach for utilization of the spatial information. There 
is no clear definition for image texture, but we can describe how the image texture look e.g. fine, coarse, smooth or 
irregular, homogeneous and so forth. [1] 
Many authors have introduced methods to quantify spatial relations between pixels and have used them as an input 
data in the classification. There are a wide range of texture quantization methods that can be classified in three 
main groups, statistical, structural and spectral based methods [2]. Statistical methods produce statistical measures 
of gray level variation; Structural methods assume that the texture pattern is composed of spatial arrangement of 
texture primitives, so their task is to locate the primitives and quantify their spatial arrangement; and Spectral 
features are generated using the spectrum obtained through image transformations such as Fourier transform. 
In this paper, four groups of features based on first order statistics, run-lengths matrix, autocorrelation and 
geostatistics which can be classified as the statistical methods have been generated. Then different classifications 
resulting from the combination of different texture features have been evaluated. 
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2. Generated Features 
 

1) First Order Statistical Features 
 

In this paper we generate mean, median and variance from the first order statistical measures. 

pixelsofnumberTotal

Ilevelgraywhithpixelsofnumber
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If (I) is the random variable representing the gray levels in the region of interest, the first order histogram P (I) is 
defined as: 

(1) 
 
Now mean and variance are defined as: 
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 Where        = number of gray levels. N
Median is the middle value in a set of numbers arranged in increasing order. Because the kernel size always cover 
odd number of pixels, median can be extracted simply by choosing the mid member of an array which contains 
gray levels of pixels that covered by the mask and then is sorted.  

g

 
2) Features Generated from Gray Level Run-lengths Matrix  

),( jiQRL

A gray level run is a set of the consecutive pixels having the same gray level value. The length of the run is the 
number of pixel in the run. The gray level run-lengths matrix is generated in for directions (0°, 45°, 90°, 135°), it 
is a          matrix (      is the number of gray levels and       is the maximum run length that in the mask ) , it's 
(i,j)th element (                    ) is the number of runs with gray level (i), and length (j).  
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Run-length features encode textural information related to number of times each gray level appears in image by 
itself. After generating gray level run-length matrix, the five following features can be defined [1]: 
 
1-Short Run Emphasis     2-Large Run Emphasis 
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3- Gray Level Nonuniformity    4- Run Length Nonuniformity 
 
 
 
     (6)                 (7) 
 
 
 
5- Run Length Nonuniformity 
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3) Geostatistical Features 

 

Geostatistics is the statistical methods developed for and applied to geographic data. These statistical methods are 
required because geographical data do not usually conform to the requirements of standard statistical procedures, 
due to spatial autocorrelation and other problems associated with spatial data [3]. 
Semivariogram that represents half of the expectation of the quadratic increments of pixel pair values at the special 
distance can quantify both spatial and random correlation between the adjacent pixels. [4] I it is defined as: 
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That is the classical expression of variogram (h) here represents a vectorial lag between pixels. In this study 
direct variogram, madogram, cross variogram and pseudo-cross variogram have been used. The first two operate 
separately for each image bands and the second two operate for pairs of image bands. 
1- Direct Variogram 
In this approach the following equation is used to estimate E.q. (9) : 
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 n(h) is the number of pairs that the are in mask filter. 
2- Madogram 
This is similar to direct variogram except squaring differences, but uses the absolute value of differences. 
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3- Cross Variogram 
Two image bands are used to quantify the joint spatial variability between bands. 
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3- Pseudo-cross Variogram 
It is similar to direct variogram, but uses pairs which are from two different bands (m,n). 
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4) Autocorrelation Features 
 

Autocorrelation refers to the degree of existing relationship between two or more spatial variables, such that when 
one changes, the other(s) also change. This change can either be in the same direction, which is a positive 
autocorrelation, or in the opposite direction, which is a negative autocorrelation [4]. 
Coarse texture consists of large primitives but fine texture has small primitives and autocorrelation can quantize 
this coarseness can be quantized through the autocorrelation function like: [5]  
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cN      are kernel size dimensions rN &
(m,n) is the lag vector.    

 
3. Case Study 

 
For evaluation of the above methods, we selected a 500*500 size subset from the IKONOS ortho image of part of 
Tehran suburb area (Fig. 1). This subset contains different textures. Ten classes (table 1) were defined in the area, 
and two images were produced to be used as training and testing sets. Some of these classes are spectrally similar 
and therefore are confused in the pixel-based conventional classification algorithms. 
 

No. Class Name Sample 
1 Ploughed Land 

Table 1. Classes and their sample  

 
2 Tree  
3 Row of Trees  
4 Bushed  
5 Cultivated Land  
6 Asphalt Road  
7 Bare Soil  
8 Bare Soil 2  
9 Building  

10 Building 2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Selected Subset 



 
Different window sizes including 3 by 3, 5 by 5, 7 by 7 and 9 by 9 pixels were used to calculate each texture-based 
feature. Also, calculation of the first order statistical and run lengths matrix was based on varying number of pixels 
up to 25 pixels. 
Because of the large number of features generated from the run lengths matrices and their correlation, the mean 
value of four directions was computed and therefore, omni directional features were produced. 
The supervised maximum likelihood classification process was completed using each group of generated features 
plus the three spectral bands as input features. Independent test samples were used for evaluation of the accuracy 
of the classification. For this purpose, producer accuracy, overall accuracy, variance and mean of the producer and 
normalized overall accuracy were considered.  
 

4. Results and Conclusions 
 

Results of some tests are presented in tables 2, 3 and 4. Also three graphs representing maximum and minimum 
values of the mean, overall and variance of accuracy are shown in Figures 2-5. Considerable variation of the 
accuracy of classes as a function of the input features demonstrates the fact that selection of the proper feature for 
a given situation is an important task.  
Overall accuracy is almost influenced by dominant classes and therefore, it is not so sensitive for change of 
the accuracy of the minor classes. So, consideration of the mean and variance of accuracy is as important as 
the overall accuracy. 
Some feature display very specific roles for classification of a particular class. There are situations where, 
discrimination of a class with high accuracy is more important than obtaining a medium overall accuracy.  
First order statistical features act as low pass filters, leading to significant reduction of the high frequency 
components in the data. It may lead to poor results when classes are spectrally similar with smooth and distinct 
textures. Also it may mix the adjacent classes. 
Run lengths based features show better performance when the classes of interest such as the cultivated lands (see 
item 5 on table 3), are composed of strips, but generally they are weak. Autocorrelation-based features did not 
show good performance in most tests and needs more considerations.  
Geostatistical-based features show a good performance in production of the homogeneous maps with high 
accuracies (table 2 & 3). Use of some features not only does not show an increase in the accuracy, it leads to lower 
accuracies (as an example, see item 7 on table 3). Therefore careful selection and use of different features is very 
important. It may be concluded that the first order statistical and geostatistical features work better for 
improvement of the accuracy of most classes and their performances is not specific. Whereas run lengths based 
features as mentioned above are most suited for discrimination of some special classes. These observations may be 
used as a guide for proper selection and use of different features. 
The research will be continued towards testing various combinations of features and formulation of the possible 
influences of the window size in the results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2 Results considering all tests 
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Ploughed Land 

Tree 
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ow

 of Trees 

B
ushed 

C
ultivated 
Land 

A
sphalt R

oad 

B
are Land 

B
are Land 2 

B
uilding 

B
uil2 

O
verall 

A
ccuracy 

M
ean 

A
ccuracy 

A
ccuracies' 
V

ariance 

O
veral/ 

V
ariance 

1                 - No feature - - - 76.47 50.68 79.3 36.96 87.98 72.72 81.77 80.61 98.94 99.39 75.74 76.481 384.01 0.19
First Order 11 - - 95.34          43.38 94.08 100 95.61 100 94.22 91.54 100 100 95.27 91.417 294.4622 0.323539 
First Order 19 - - 93.96          55.25 84.62 97.74 89.06 100 99.85 99.43 84.81 100 95.86 90.472 191.515 0.500535 
First Order 13 - - 95.91         36.53 96.45 99.58 92.83 100 97.37 93.43 100 100 96.14 91.21 376.3108 0.25548 
First Order 17 - - 94.61          52.51 91.72 98.44 90.31 100 99.83 96.34 91.7 100 96.2 91.546 201.8726 0.476538 

2 Overall 
Accuracy 

First Order 15 - - 95.39          47.03 94.67 98.87 91.75 100 99.74 94.31 98.41 100 96.57 92.017 258.0567 0.37422 
First Order 17 - - 94.61          52.51 91.72 98.44 90.31 100 99.83 96.34 91.7 100 96.2 91.546 201.8726 0.476538 
First Order 15 - - 95.39          47.03 94.67 98.87 91.75 100 99.74 94.31 98.41 100 96.57 92.017 258.0567 0.37422 
First Order 5 - - 90.81          71.69 90.53 97.31 97.31 95.32 91.44 86.73 100 100 92.54 92.114 71.04936 1.302475 
First Order 9 - - 95.1 65.3          91.72 99.95 97.22 99.44 91.18 89.89 100 100 94.58 92.98 110.2115 0.858168 

3 Mean 
Accuracy 

First Order 7 - - 94.66           68.49 92.31 99.48 97.58 98.11 90.49 88.95 100 100 94.13 93.007 90.41698 1.041066 
Geostatistics            5 0 3 86.32 64.84 81.66 91.32 85.83 72.72 89.02 82 99.12 98.16 87.24 85.099 112.0417 0.778638 
First Order 9 - - 95.1 65.3         91.72 99.95 97.22 99.44 91.18 89.89 100 100 94.58 92.98 110.2115 0.858168 
First Order 3 - - 86.18          65.3 84.02 87.36 95.61 81.85 89.82 84.9 100 99.08 88.35 87.412 100.7576 0.876857 
First Order 7 - - 94.66          68.49 92.31 99.48 97.58 98.11 90.49 88.95 100 100 94.13 93.007 90.41698 1.041066 

4 
Overall 

Accuracy/ 
Variance 

First Order 5 - - 90.81           71.69 90.53 97.31 97.31 95.32 91.44 86.73 100 100 92.54 92.114 71.04936 1.302475 

Table 3 Results omitting large kernel size features 
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A
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A
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V
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O
veral/ 

V
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1                 - No feature - - - 76.47 50.68 79.3 36.96 87.98 72.72 81.77 80.61 98.94 99.39 75.74 76.481 384.01 0.19
Geostatistics 9 1 1 87.33         37.9 79.3 99.39 95.16 94.54 94.35 95.07 100 98.16 92.33 88.119 349.7204 0.264011 
Geostatistics 9 2 1 90.41          24.66 85.8 98.68 95.61 92.43 91.63 94.88 100 98.87 92.41 87.297 503.5477 0.183518 

FirstOrder 5          - - 90.81 71.69 90.5 97.31 97.31 95.32 91.44 86.73 100 100 92.54 92.114 71.04936 1.302475 
FirstOrder            7 - - 94.66 68.49 92.3 99.48 97.58 98.11 90.49 88.95 100 100 94.13 93.007 90.41698 1.041066 

2 Overall 
Accuracy 

FirstOrder            9 - - 95.1 65.3 91.7 99.95 97.22 99.44 91.18 89.89 100 100 94.58 92.98 110.2115 0.858168 
Geostatistics 7 1 1 87.58           40.64 81.1 97.08 96.05 90.53 91.98 94.06 100 98.16 91.36 87.715 304.8665 0.299672 
Geostatistics 9 1 1 87.33           37.9 79.3 99.39 95.16 94.54 94.35 95.07 100 98.16 92.33 88.119 349.7204 0.264011 
First Order 5 - - 90.81          71.69 90.5 97.31 97.31 95.32 91.44 86.73 100 100 92.54 92.114 71.04936 1.302475 
First Order 9 - - 95.1           65.3 91.7 99.95 97.22 99.44 91.18 89.89 100 100 94.58 92.98 110.2115 0.858168 

3 Mean 
Accuracy 

First Order 7 - - 94.66           68.49 92.3 99.48 97.58 98.11 90.49 88.95 100 100 94.13 93.007 90.41698 1.041066 
Geostatistics 5 0 3 86.32       64.84 81.7 91.32 85.83 72.72 89.02 82 99.12 98.16 87.24 85.099 112.0417 0.778638 
First Order 9 - - 95.1          65.3 91.7 99.95 97.22 99.44 91.18 89.89 100 100 94.58 92.98 110.2115 0.858168 
First Order 3 - - 86.18         65.3 84 87.36 95.61 81.85 89.82 84.9 100 99.08 88.35 87.412 100.7576 0.876857 
First Order 7 - - 94.66          68.49 92.3 99.48 97.58 98.11 90.49 88.95 100 100 94.13 93.007 90.41698 1.041066 

4 
Overall 

Accuracy/ 
Variance 

First Order 5 - - 90.81           71.69 90.5 97.31 97.31 95.32 91.44 86.73 100 100 92.54 92.114 71.04936 1.302475 
RLM_Mean 7          - - 83.17 34.7 53.3 84.91 95.96 83.41 88.61 78.9 97.17 99.69 85.64 79.977 425.1112 0.201453 
Geostatistics 7 1 1 87.58        40.64 81.1 97.08 96.05 90.53 91.98 94.06 100 98.16 91.36 87.715 304.8665 0.299672 
First Order  9            - - 95.1 65.3 91.7 99.95 97.22 99.44 91.18 89.89 100 100 94.58 92.98 110.2115 0.858168
First Order  5            - - 90.81 71.69 90.5 97.31 97.31 95.32 91.44 86.73 100 100 92.54 92.114 71.04936 1.302475

5 Cultivated 
Land 

First Order 7            - - 94.66 68.49 92.3 99.48 97.58 98.11 90.49 88.95 100 100 94.13 93.007 90.41698 1.041066
Geostatistics 5 4 1 82.07         36.99 84.6 76.43 89.96 73.83 93.7 80.1 94.88 98.46 85.04 81.104 307.0225 82.07 
Geostatistics 5 3 2 84.25          42.47 80.5 76.19 85.2 71.05 93.77 79.15 95.94 98.77 85.3 80.726 259.9893 84.25
Geostatistics 5 4 0 87.8 31.51         80.5 82.74 87.8 72.94 94.24 76.75 96.47 97.34 87.19 80.806 367.7014 87.8 
Geostatistics 9 1 1 87.33          37.9 79.3 99.39 95.16 94.54 94.35 95.07 100 98.16 92.33 88.119 349.7204 87.33

6 

           

Bare Land

Geostatistics 5 3 0 81.84 29.68 79.3 87.03 89.87 78.95 94.43 77.07 98.06 97.65 86.28 81.387 391.0212 81.84
RLM_Mean  3         - - 41.68 21 59.17 61.62 59.28 55.46 73.88 70.81 95.23 97.85 61.06 63.598 526.0995 41.68 
RLM_Mean  25 - - 73.96          11.87 37.87 96.89 89.51 84.86 95.47 91.6 55.12 94.47 84.55 73.162 843.0157 73.96 
Geostatistics 3 2 1 56.96          48.86 75.15 57.52 81.52 66.26 91.7 76.25 97.53 98.46 73.05 75.021 307.9592 56.96 
Geostatistics 3 2 2 72.72           55.25 76.33 45.59 78.03 59.35 89.5 78.96 96.82 98.98 76.02 75.153 310.3257 72.72 

7 
Worst 
Mean 

Accuracy 
RLM_Mean  5            - - 69.97 39.27 55.03 68.08 90.31 75.84 83.65 77.76 97.35 99.59 77.37 75.685 351.7401 69.97 



 
 
 
 
 
 
 
 
 
 
 
 



Table 4 Features grade considering better mean accuracy and normalized overall accuracy 
 

Lag Lag   

w
s x y 

Mean 
Accuracy   

w
s x Y 

Normalize
d Overall 

1 First Order 7 - - 93.007  First Order 5 - - 1.302475 
2 First Order 9 - - 92.98  First Order 7 - - 1.041066 
3 First Order 5 - - 92.114  First Order 3 - - 0.876857 
4 Geostatistics 9 1 1 92.017  First Order 9 - - 0.858168 
5 Geostatistics 7 1 1 91.546  Geostatistics 5 0 3 0.778638 
6 Geostatistics 7 0 1 91.417  Geostatistics 7 4 5 0.664522 
7 First Order 3 - - 91.21  Geostatistics 7 3 5 0.663911 
8 Geostatistics 9 2 1 90.472  Geostatistics 5 1 3 0.660369 
9 Geostatistics 9 2 2 90.152  Geostatistics 7 6 3 0.623352 
10 Geostatistics 9 1 2 89.468  Geostatistics 7 2 4 0.610159 
11 Geostatistics 7 1 2 88.119  Autocorrelation 7 1 2 0.609127 
12 Geostatistics 7 0 4 87.715  Geostatistics 5 0 2 0.606313 
13 Geostatistics 7 0 2 87.441  Geostatistics 5 1 2 0.6062 
14 Geostatistics 9 0 1 87.412  Geostatistics 7 0 4 0.596301 
15 Geostatistics 7 2 1 87.297  Geostatistics 7 3 4 0.578512 
16 Geostatistics 9 0 2 87.049  Geostatistics 7 2 5 0.567024 
17 Geostatistics 9 0 4 87.019  Geostatistics 7 0 1 0.557598 
18 Geostatistics 7 0 3 86.767  Geostatistics 7 3 6 0.550732 
19 Geostatistics 9 1 4 86.587  Geostatistics 7 5 4 0.550048 
20 Geostatistics 7 2 2 86.586  Autocorrelation 5 1 1 0.543256 
21 Geostatistics 7 1 4 86.414  Geostatistics 5 2 3 0.539236 
22 Geostatistics 9 3 3 86.265  Autocorrelation 5 0 2 0.530754 
23 Geostatistics 5 1 1 86.196  Autocorrelation 7 0 3 0.529071 
24 Geostatistics 7 1 3 86.104  Geostatistics 7 6 4 0.52864 
25 Geostatistics 9 1 3 86.069  Geostatistics 7 2 6 0.52619 
26 Geostatistics 9 3 1 85.959  Geostatistics 7 4 4 0.525452 
27 Geostatistics 7 3 2 85.934  Autocorrelation 7 1 1 0.520172 
28 Geostatistics 9 2 4 85.925  Geostatistics 7 1 4 0.519993 
29 Geostatistics 7 3 1 85.763  Geostatistics 7 1 5 0.511445 
30 Geostatistics 5 0 3 85.49  Autocorrelation 7 0 2 0.503506 
31 Geostatistics 9 0 3 85.429  Geostatistics 7 5 5 0.495948 
32 Geostatistics 9 3 2 85.398  Geostatistics 7 0 3 0.483315 
33 Geostatistics 7 4 1 85.39  Geostatistics 7 1 3 0.481285 
34 Geostatistics 5 0 2 85.299  Geostatistics 5 2 4 0.479202 
35 Geostatistics 7 2 4 85.178  Geostatistics 5 0 4 0.473412 
36 Geostatistics 7 2 0 85.157  Geostatistics 7 4 6 0.460928 
37 Geostatistics 7 5 1 85.101  Autocorrelation 7 2 2 0.459864 
38 Geostatistics 7 1 0 85.099  Geostatistics 7 1 6 0.457003 
39 Geostatistics 9 2 3 84.996  Geostatistics 7 1 2 0.454169 
40 Geostatistics 7 3 3 84.9  Geostatistics 7 2 3 0.452742 
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Figures 2-Minimum and Maximum of obtained mean accuracy  
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Figures 3  Minimum and Maximum of obtained accuracy variance 
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Figures 4 Minimum and Maximum of obtained overall accuracy 
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