
Application of Feature Selection and Classifier 
Ensembles for the Classification of Hyperspectral Data 

 
Y.Maghsoudi, A.Alimohammadi, M.J.Valadan Zoej and B. Mojaradi 

 
Faculty of Geomatics Eng., K. N. Toosi University of Technology, Tehran, Iran 

 
ymaghsoudi@yahoo.com, alimoh_abb@yahoo.com, valadanzouj@kntu.ac.ir, Mojaradi@alborz.kntu.ac.ir

 
 

Abstract: 
The improved spectral resolution of modern hyperspectral sensors provides capabilities for discrimination of subtly 
different classes and objects. However, in order to obtain statistically reliable classification results, the number of 
required training samples increases exponentially as the number of spectral bands increases. However, in many 
situations, acquisition of the large number of training samples for the high-dimensional datasets may not be feasible. 
Multiple classifiers have been regarded as a promising solution for this problem. In this paper, creation of ensemble 
of classifiers based on feature selection has been evaluated and an effective strategy for generation of feature subsets 
has been proposed. The proposed method is based on generating multiple feature subsets by running feature 
selection algorithm several times, with the aim of discrimination of one class from the others each time. Each of the 
final subsets of features is selected so as to have the capability for discrimination of one of the classes. Each of these 
subsets is then passed to the maximum likelihood classifier. Finally a combination scheme is used to combine the 
outputs of individual classifiers.  Practical examinations on the AVIRIS data for discrimination of different land 
cover classes demonstrate the effectiveness of the proposed strategy. 
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1. Introduction 

Recent developments in sensor technology have made it possible to collect hyperspectral data from 200 
to 400 spectral bands. These data, can provide more effective information for monitoring of the earth 
surface and a better discrimination among ground cover classes than the traditional multispectral 
scanners. However, the data analysis approach that has been successfully applied to multispectral data in 
the past is not so effective for hyperspectral data. Because, the existing stochastic approaches often fail to 
achieve satisfactory results for hyperspectral data. 
Classification of hyperspectral images is challenging. The classification performance in these images 
suffers from two important problems: 
1. Curse of dimensionality; the accuracy of parameter estimation depends substantially on the ratio of the 
number of training samples to the dimensionality of the feature space. As the dimensionality increases, 
the number of training samples as needed for characterization of classes increases considerably. If the 
size of the training samples fails to satisfy the requirements, which is the case for the hyperspectral 
images, the estimated statistics, becomes very unreliable. Although increasing the number of spectral 
bands potentially provides more capabilities for discrimination of classes, this positive effect can be 
diluted by poor statistics estimation. As a result, the classification accuracy first grows and then declines 
with the number of spectral bands when the number of the training samples is low, finite and remains 
constant. This is often referred to as the Hughes Phenomenon or the curse of dimensionality [1]. As it is 
often difficult to provide adequate training samples for supervised classification, an ensemble of 
classifiers can be used to solve this problem. 
2. Large hypothesis space; In general  there  are  three  spaces  associated  with any classification 
problem :(i) Input space , which is the space of all the features that are used in the classification process 
,(ii) Output space which is the set of all observed classes. This space is the most powerful one from the 
standpoint of information extraction [2] and (iii) Hypothesis space which is the space of the models in 
which the desired classifier is sought. In other words it is a link between the input and output spaces. 
With increase in the input dimensionality, for a fixed number of classes and choice of a classifier family, 
the hypothesis space also grows exponentially. This problem makes the classification performance very 
unreliable. By using an ensemble of classifiers this problem can also be avoided. 
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An ensemble of classifiers requires two conditions to be met in order to reduce the generalization error of 
its constituent members [14]. Firstly the classifiers must be diverse. Obviously ensembling identical 
classifiers will not lead to any improvements. To be precise about what diversity means, classifiers 
should be independent i.e. making uncorrelated errors. Secondly the classifiers should be accurate. An 
accurate classifier is one that has an error rate of better than random guessing on a new data point. If the 
classifiers are an average accurate and diverse then we would expect that most of the classifiers will not 
make the same mistake on the same example. A simple majority voting schema would ensure that the 
correct classification is made. 
Design of classifier ensembles consists of two parts. The first part is constructing multiple classifiers for 
creation of a set of diverse and accurate classifiers and the second part is the design of a combination 
scheme for implementation of fusion mechanism that can optimally combine the classifications. 
In this paper a new method for constructing an ensemble of classifiers has been proposed. The method is 
based on finding the best features that can discriminate a class from the rest. A feature selection process 
is run several times each time for the discrimination of one of the classes. Each of the final selected 
subsets of features has the potential for optimal discrimination of one of the classes. Using an ensemble 
of these classifiers can lead to a better classification result. 
The paper is organized into 3 sections. Section 2 presents a literature survey on feature selection 
algorithms. In section 3 different methods for constructing an ensemble of classifiers have been 
reviewed. Section 4 describes the proposed method. The experimental results on AVIRIS data have been 
presented in section 5. 

 
2. Feature Selection Algorithms 

A key stage in constructing classifiers is the selection of the best discriminative and informative features. 
The performance of most classifiers is improved when correlated or irrelevant features are removed. A 
large number of algorithms have been proposed for feature selection and some comparative studies have 
been carried out [3-6]. 
The feature selection problem can be stated as follows: Given a set of N features find the best subset of 
m features to be used for classification. Feature selection algorithms generally involve both a search 
strategy and an evaluation function [7-8]. The aim of the search algorithm is to generate subsets of 
features from the original feature space and the evaluation function compares these feature subsets in 
terms of discrimination. The output of the feature selection algorithm is the best feature subset found for 
this purpose. 
Optimal search algorithms determine the best feature subset in terms of an evaluation function, whereas 
suboptimal search algorithms determine a good feature subset. Even for a medium sized feature set, 
optimal search algorithms are exhaustive and prohibitive. 
Branch and bound method proposed by Narenda and Fukunaga [9] gives the optimal solution. It starts 
searching from the original feature space and proceeds by removing features from the set. A bound is 
placed on the value of evaluation function to create a rapid search. As the evaluation function obeys the 
monotonicity principle, any feature subset for which the value is less than the bound is removed from the 
search space. 
Sequential methods include a well-established family for feature selection. They progressively add and 
discard features according to a certain strategy, ranging from sequential forward and backward selection 
methods (SFS, SBS) to the more complex generalized plus-l take-away-r algorithm [3]. SFS starts from 
an empty set and in each iteration it generates new feature sets by adding a feature selected by some 
evaluation function. On the other hand SBS starts from a complete set and in each iteration generates 
new subsets by removing a feature selected by some evaluation function. The main problems of these 
two algorithms are that the selected features in each iteration can not be removed in SFS and the 
discarded features can’t be reselected in SBS. 
To overcome these problems Pudil et al. [5] proposed the floating versions of SFS and SBS. Sequential 
forward floating search algorithms (SFFS) can backtrack unlimitedly as long as the backtrack finds a 
better feature subset. SBFS is the backward version. For very high dimensional data these two methods 
are very effective. 
Genetic feature selectors are a series of feature selection methods which use genetic algorithm to guide 
the selection process. The genetic algorithm for feature selection was proposed by Siedlecki and 
Sklansky [10]. In genetic feature selection each feature subset is represented by a chromosome which is 



binary string including 0’s and 1’s, which corresponds to a discarded or selected features respectively. 
New chromosomes are generated using crossover, mutation and reproduction operators. Ferri et al. [4] 
showed that the performance of genetic feature selectors deteriorates when the size of the complete 
feature set increases. 
Serpico et all. [11] proposed steepest ascent (SA) search algorithm for feature selection in hyperspectral 
data. It is based on the representation of the problem solution by a discrete binary space and on the 
search for constrained local maximas of a criterion function in such space. A feature subset is a local 
maximum of the criterion function if the value of that feature subset criterion function is greater than or 
equal to the value the criterion function takes on any other point of the neighborhood of that subspace. 
They also proposed fast constrained (FC) search algorithm which is the computationaly reduced version 
of SA. The number of iteration in this algorithm is deterministic. Although this algorithm is expected to 
be less effective than SA, but it is always faster than or as fast as SA. A comparative study on AVIRIS 
data has shown that SA and FC allowed greater improvements than SFFS and differences between SA 
and FC are negligible. 
Langley [12] put the feature selection methods into two groups: filters and wrappers. Filter methods are 
independent of the classifier to be used and the evaluation function is usually one of the inter-class 
distance measures e.g. Bhattacharyya or Jeffries-Matusita (JM) distance whereas wrappers utilize the 
classifier as the evaluation function. Since the classifier is ignored in filter methods there is no 
interaction between the biases of the feature selector and the classifier and the quality of the best selected 
feature subset is not as effective as the subset selected using a wrapper model [13]. 
 
3. Methods for Creating Multiple Classifiers 

There are many methods for creating an ensemble with the mentioned properties in section 1. Three main 
families of ensemble generation methods are: Manipulating training data, Manipulating input features 
and Manipulating output classes. The first method of generating an ensemble of classifiers is to train 
classifiers on different sets of training data. Bagging [15] which uses sampling with replacement is one 
of the best known methods for generating a set of classifiers. In bagging we create  different training 
sets by sampling with replacement from the original training set. We then train a classifier on each set 
and combine their outputs using a simple voting. A popular alternative to Bagging is Boosting [16]. In 
Boosting the classifiers in the ensemble are trained serially, with the weights on the training instances set 
according to the performance of the previous classifiers. The main idea is that the classification 
algorithm should concentrate on the difficult instances. These methods are only effective for unstable 
learning algorithms. By “unstable” we mean the learning algorithms whose output predictions show 
considerable changes in response to a small change in the training samples (e.g. neural networks and 
decision trees). Another method for generating multiple classifiers is to manipulate the set of input 
features. In this method different feature subspaces are passed to different classifiers. In order to increase 
the diversity among different subspaces, the sampling of features from the original set of features can be 
randomly selected [17]. There are different sampling functions: sampling with replacement and sampling 
without replacement. In sampling with replacement a feature can be selected more than once. Obviously, 
this method works well when the input features are highly redundant. On the other hand this approach 
does not suffer from curse of dimensionality. The third method for generating a good ensemble of 
classifiers is through manipulating the output classes. Error Correcting Output Coding (ECOC) proposed 
by Dietterich and Bakiri [18] is one of these methods. In this method a multiclass problem is 
decomposed into multiple two-class problems. Suppose that the number of classes, k, is large. New 
learning problems can be constructed by randomly partitioning the k classes into two subsets Am and Bm. 
The input data can then be relabeled so that any of the original classes in set Am are given the label 0 and 
the original classes in set Bm are given the label 1. N classifiers are trained on each of these two-class 
problems made up of Am and Bm. Finally an ensemble of N classifiers is obtained. For classification of a 
new object, the output of N classifiers are processed and the new object is assigned to the class received 
the highest number of votes. Dietterich and Bakiri [18] showed that ECOC could improve decision trees 
and neural networks and it does not work with classifiers that use local information such as the KNN 
approach. 
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4. The Proposed Method 
In this paper a new method for creating multiple classifiers has been proposed. As mentioned in section 2 
accuracy and diversity are two conditions for creating an effective set of classifiers. In most of the 
proposed methods one condition is usually sacrificed for another. For example in Random Subspace 
Method [17] although the classifiers are quite diverse but they are not expected to have a high accuracy, 
so their ensemble may not lead  to a good result. 
In order to overcome this problem and the problems mentioned in section 1 a class-based feature 
selection for creating an ensemble of classifiers has been proposed. The main idea of the method is that 
from the huge number of spectral bands in hyperspectral data there are some bands which can 
discriminate each class better than the others. Assume that there are k classes in the classification 
problem. In order to find the best features for each of the classes we applied a feature selection process. 
In this paper the Fast Constrained search algorithm is used as the search strategy. As mentioned in 
section 3 the Fast Constrained search algorithm is very fast and the quality of the selected features is 
comparable to many other search algorithms. The classification accuracy of each class was used as a 
criterion for the evaluation of feature subsets. Classification accuracy of each class is defined as the 
percentage of independent test samples of each class correctly classified by the classifier. Bayesian 
classifier was used as the classification algorithm. For each class, the feature subset with the highest 
evaluation function is subsequently passed to the Bayesian classifier. This process is repeated for all the 
classes. The method is schematically represented in Fig. 1. Finally a combination scheme is used to 
combine the outputs of individual classifiers. The first classifier shares its first class values in the final 
classified image, the second classifier plays this role by sharing its second class values and so on. For 
those pixels in the final classified image in which there is an overlap between the decisions of classifiers 
the pixel label with the highest value of probability is selected as the final decision.  

 

Fig. 1: A schematic illustration of the proposed method

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Land cover  
classes 

Number 
of 

Training. 

Number 
of  

Test 
1.Alfalfa 34 44 
2.corn_notill 375 201 
3.Corn_min 213 195 
4.Grass_pasture 200 136 
5.Grass_Trees 307 221 
6.Grass/pasture mowed 579 914 
7.Hay_windrowed 257 126 
8.Oatas 110 45 
9.Soy_notil  355 277 
10.Soy_clean 190 170 
11.Woods 304 554 
12.Corn 143 219 
Total 3067 3102 

Table 1. List of classes and training and test sample size

Fig. 2 :  Band 12 of the hyperspectral image 
utilized in the experiments. 

5. Experiments 
5.1. Dataset Description 
The dataset used in this study is an AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) dataset 
downloaded from [19] along with a ground truth image, containing 12 classes. The considered dataset 
referred to the agricultural area of Indian pie in the Northern part of Indiana. Images were acquired by an 
AVIRIS in June 1992. The dataset was composed of 220 spectral channels (spaced at about 10 nm) 
acquired in the 0.4-2.5 um region. Hyperspectral image bands are often highly correlated and among 
them some of the absorption bands contain little signal but noise. Processing of the original spectral 
bands not only is inefficient but also tends to create poor results. So the Maximum Noise Fraction 
transform (MNF) [20] is applied on the image. MNF consists in projecting the original image in a space 
where the new components are sorted in order of SNR. The method first estimates the noise level in the 
original image by taking advantage of the spatial correlation between pixels. Then, a first Principal 
Component Analysis (PCA) is applied to the data, by using the estimated noise covariance matrix, 
leading to spectrally whitened noise, independent from the data. A second PCA is applied on the 
projected data, leading to maximize the SNR of the new successive components [21]. This data 
representation is very interesting because it allows the filtering to be adapted to the SNR of each 
component in the transformed space. By considering only the first high eignvalues and using an inverse 
MNF we finally, allow the filtered image to be reprojected in the original space. An example of the 
resulting transformed image is detailed in figure 2. 

 
5.2. Implementation 
Experiments were carried out to evaluate the performance of the proposed method. In this study 30 
features were used for each feature subset. The training data are used to train the Bayesian classifier 
using different feature subsets and the test data are used to evaluate the results. Table 2 shows the 
number of training and test data for each of the 12 classes. In order to assess the efficiency of using the 
classification accuracy as an evaluation function the same procedure is conducted using Jeffries-Matusita 
distance which is an inter-class measure (Table 2). The Jeffries-Matusita distance is as 
follow:
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where k is the number of classes, bij is the Bhattacharyya distance between class i and j and Mi and Ci are 
the mean vector and covariance matrix of the class i respectively. 
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Table 2. Performance of the proposed approach as compared with the others
Classification Accuracy(Percent) 
Random Subspace Method 

Classes 
 

MAX MIN MEAN PRODUCT 
Jeffries-
Matusita 

Proposed 
Method 

Corn-notill 31.343 35.323 26.866 27.363 42.786 59.204 
Corn-min 52.821 54.359 58.974 58.462 60.513 66.667 
Grass/pasture 81.618 80.882 80.882 80.882 80.882 83.088 
Grass/trees 92.308 90.95 92.76 92.76 93.213 93.213 
Grass/pasture-mowed 47.812 57.221 58.534 57.768 61.16 59.628 
Woods  86.282 76.715 86.282 86.462 91.111 86.667 
Oats 86.667 86.667 95.556 95.556 70.397 72.563 
Soy-notill 63.538 67.87 69.314 68.953 91.765 90.588 
Alfalfa 78.571 78.571 90.476 90.476 33.333 85.714 
Soy-clean 91.765 90.588 92.941 92.941 81.227 89.531 
Hay-windrowed 99.206 96.032 99.206 99.206 99.206 99.206 
Corn 18.265 16.895 12.329 12.329 18.265 15.982 
Overall Accuracy 63.387 64.774 67.097 66.871 67.74 70.94 

 the other hand in order to show the efficiency of using class-based feature selection for creating an 
semble of classifiers a random subspace method (RSM) is also applied on the same data. In this 
thod different feature subsets are randomly selected and passed to the same classifier (Bayesian 
ssifier in this study). The outputs of each maximum likelihood classifier are vectors of probabilities 
 different classes. Four operators including the Max, Min, Mean and Product are then used to combine 
 outputs of the individual classifiers. The results are illustrated in table 3. Results of this experiment 

ve shown that the use of the proposed method leads to superior performance as compared to other 
thods and classification accuracy shows considerable increases for most of the classes (Table 2). 
though some classes show little increase or even decrease in classification accuracy but the overall 
uracy shows a relative increase in the proposed method.  

Conclusions 
sults of this research have shown that using a class-based feature selection can be an effective method 
 creation of a suitable set of classifiers. Application of this approach, not only can solve the problem 
small training samples but it can also serve as a good approach for utilization of the redundant features 
hyperspectral data. 
though employment of the classification accuracy of the classes as the evaluation function is 
mputationally burdensome, but it can lead to minimization of the biases inherent in the feature 
ection algorithm and the classifier. As the feature selection is based on the performance of the 
ssifier that later classifies the selected features, the accuracy level is expected to increase accordingly. 
ilization of the class accuracy as the evaluation function seems to be a good procedure for parallel 
mputing. Because in this approach, the best features for one class can be selected independent from the 



others. Therefore, the process for each class may be run in different computers and then, the time 
consuming problem of the wrapper methods can be almost solved. 
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