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ABSTRACT:  
 
A Polynomial Least Squares Operation (PoLeS) 5X5 two-dimensional filter consisting of filter coefficients 
was applied to the following data: (1) SPOT  data which was artificially contaminated with low and high 
value noise pixels; (2) single channel (channel 7)   LANDSAT TM with  systematic noise;  (3) PAL NOAA-
AVHRR NDVI  cloud-contaminated  data; (4) raw, speckled  JERS -1 data,  in order to test the efficacy of  
the  PoLeS  method in filtering  out  both low and high value noise. The method showed substantial 
reduction of noise in the PoLeS-filtered  data values, with an overall  smoothing effect  on the  image but 
with moderate preservation of  edges, upon visual examination. The PoLeS Method is likewise compared 
with the classical or convolution filtering techniques such as the average, median  and mode filters. 
 
The PoLeS filter is proposed as an alternative and novel  noise filtering technique that can be applied to 
a number of satellite data, to  reduce  high and low value noise. 
 
1.   INTRODUCTION 
 
Image enhancements of most interest in remote sensing  generally relate to smoothing, edge detection 
and enhancement, and line detection. Likewise, image enhancements are made to restore  images that 
suffer from errors, noise, and geometric distortion introduced into the data during the scanning, 
transmission, and recording processes (Sabins, 1987). There are two basic types of noise in image data, 
random and nonrandom noise. Periodic line dropouts and striping are forms of nonrandom noise. 
Random noise occurs as individual pixels with digital numbers (DNs) that are much higher or lower than 
the surrounding pixels (Sabins, 1987). This will often show  as a speckled “salt and pepper”  pattern on 
the image in regions of homogeneity; it can be removed  by the process of  low pass filtering or 
smoothing, unfortunately at the expense of some high frequency information in the image (Richards, 
1986). Nonrandom noise on the other hand include periodic line drop-outs and stripping. 
 
Most of methods for noise removal in digital  images  are template techniques, in which a template or a 
filter, box or window   is defined and then moved over the image row by row and column by column. The 
product of the pixel brightness values, covered by the template at a particular position, and the template 
entries are taken and summed  to give the template response. This response is then used to define a 
new brightness value for the pixel currently at the center of the template. When this is done for every 
pixel in the image, a radiometrically modified image is produced  that enhances or smoothens geometric 
features according to the specific numbers loaded into the template. 
 



Digital filters have been used to derive these values.  Filtering provides a means of improving images by 
suppressing or enhancing certain spatial frequencies, directions an textures (Rosenfeld and Kak, 1976) 
The earliest examples involve a three by three array which substitutes the central pixel of the array with a 
simple measure of digital number variance (range, kurtosis, standard deviation) as it passes over the 
image (Haralick et al. 1973, Logan et al. 1979). These have proved to be particularly useful for a number 
of operations like the smoothing out of over enlarged discrete images to make them appear continuous; 
the suppression of banding that is common to both Landsat MSS and TM images and the suppres sion of 
“speckle” in radar images (Lee, 1981; Bruniquel et al, 1997; Gineste, 1999; Frulla et al, 2000; Ndi 
Nyoungui et al, 2002; and Dekker, 1998).  Likewise, filters have been used for a menagerie of 
applications, to wit, image sharpening or edge enhancement (Short, 1982), geological mapping (Thomas 
et al. 1981), terrain analysis (Weszka et al. 1976; Shih and Schowengerdt, 1983), land cover mapping 
(Hsu, 1978; Irons and Petersen, 1981), forest mapping (Logan et al, 1979), urban classification (Jensen, 
1981) and the differentiation of sea ice (Gersen and Rosenfeld 1975) and clouds (Harris, 1977). 
 
The Polynomial Least Squares Operation (PoLeS), which had been applied to the smoothing of AVHRR 
NDVI annual profile  (Aban et al, 2002),  is just as useful for array or two dimensional data processing.  
The process involves fitting a two-dimensional polynomial  to a two-dimensional array of data, either for  
derivation of numerical derivatives or   smoothing of image. 
 
The PoLeS Method is applied  to a number of satellite data sources and  noise contaminated data, in 
order to test  the technique’s efficiency and viability in restoring or enhancing the quality of the image 
data. 
 
2.  PRINCIPLE OF THE TWO-DIMENSIONAL POLYNOMIAL LEAST SQUARES OPERATION  
(PoLeS) 
 
Consider a two-dimensional  5X5 data array.  The data may be laid out as in below: 

xi   
-2 -1 0 1 2 

-2 g(0) g(1) g(2) g(3) g(4) 
-1 g(5) g(6) g(7) g(8) g(9) 
0 g(10) g(11)  g(12) g(13) g(14)  
1 g(15) g(16)  g(17) g(18) g(19)  

yi 

2 g(20) g(21)  g(22) g(23) g(24) 
 
g(i) is the pixel  value, and the column vector g represents the  all the array data, in which case,  
 

g = {g ( 0) g(1) …g (24)} T                                                                      (1) 
 
Fitting a  third order, two-dimensional  pol ynomial to this array, we have  
 
g(i) ��f(xi,yi) = a00 + a10xi + a01yi + a20xi

2+ a11xiyi + a02yi
2 + a30xi

3 + a21xi
2yi + a12xiyi

2 + a03yi
3 

 
Here (xiyi) is the coordinate of the pixel of g(i) It can be noted that the coefficients of xiyj is  aij.  The 
coefficients can be computed by  performing  a matrix procedure, with the matrix equation: 
 

                                       Xa=g                         (2) 
 
Where  

1 x0 y0 x0
2 x0y0 y0

2 x0
3 x0

2y0 x0y0
2 y0

3 
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2 x1
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2y1 x1y1

2 y1
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: : : : : : : : : : x= 

1 x24 y24 x24
2 x24y24 y24

2 x24
3 x24

2y24 x24y24
2 y24

3 
and a is the vector of polynomial coefficients: 
 

a = (a00 a10 a01 a20 a11 a02 a30 a21 a12 a03)
T                                                             (3) 

 
Equation (1) reproduces  the polynomial for each of the  va lues in the array of data. The polynomial 
coefficients can be solved by employing the least squares operation. 
 

A= (XTX)-1 XTg                                                                                     (4)  



 
C = (XTX)-1 XT may be treated as the pseudo-inverse of X, which could be said to be independent of the 
array data. Each  coefficient of the polynomial may be computed as the inner product of one column of  
pixel values g, and one row of C. The polynomial coefficients may be computed using a linear filter on 
the array data.  By doing so, one can reconstruct  g  back into a rectangular patch of pixels. Likewise 
each row of C can be reconstructed into the same size rectangle to derive at a conventional-looking 
image filter. 
 
Computing for the first three polynomial coefficients we have the following below.  It is assumed that 
coefficient aij  is computed from rectangular filter  Cij. As such, the following filter coefficients  are 
produced: 
 

-0.0743 0.0114 0.0400 0.0114 -0.0743 
0.0114 0.0971 0.1257 0.0971 0.0114 
0.0400 0.1257 0.1543 0.1257 0.0400 
0.0114 0.0971 0.1257 0.0971 0.0114 

   C00 = 

-0.0743 0.0114 0.0400 0.0114 -0.0743 
 

       
0.0738 -0.0119 -0.0405 -0.0119 0.0738 
-0.1048 -0.1476 -0.1619 -0.1476 -0.1048 

0 0 0 0 0 
0.1048 0.1476 0.1619 0.1476 0.1048 

C10 = 

-0.0738 0.0119 0.0405 0.0119 -0.0738 
 

0.0738  -0.1048 0 0.1048 -0.0738 
-0.0119 -0.1476 0 0.1476 0.0119 
-0.0405 -0.1619 0 0.1619  0.0405 
-0.0119 -0.1476 0 0.1476 0.0119 

C01 = 

0.0738  -0.1048 0 0.1048 -0.0738 
 
In applying these image patches we are  theoretically fitting  a two-dimensional polynomial  to the array 
of data surrounding each pixel and then assessing  this polynomial.   
 
The coordinate system that is employed in this case is  that shown above, where (x,y) = (0,0) at the pixel 
of interest,  which is theoretically in the middle of the data array, in this case the array coordinate  g(12). 
Hence, to calculate the  filtered  value of the pixel, the polynomial can be evaluated at that point, (x,y) = 
(0,0).  The operation would  mean evaluating the polynomial at a00, which can be calculated by applying 
the  5x5 filter C00 to the array of data. 
 
The partial derivatives  of the fitted polynomial can likewise  be calculated, and  applied to the array of 
data. Below are the partial derivatives: 

fx(xi,yi) = a10 + 2a20xi + a11yi + 3a30xi
2 + 2a21xiyi + a12yi

2                                             (5)  
 

fy(xi,yi) = a01+ a11xi + 2a02yi + a21xi
2 + 2a12xiyi + 3a03yi

2                                              (6) 
 

Evaluating at (x,y)=(0,0), the outcome are  fx(0,0) = a10 and fy(0,0) = a01, which can be calculated with 
filters  C10 and  C01 . 
 
3.   RESULTS AND DISCUSSIONS 
 
The derived  5X5 array coefficients were inputted into the PCI Image processing software through its 
FILTER facility, applying them onto different data satellite  sources.  
 
3.1  Overall Visual Quality 
 
Visual examination of the different filtered images  would show distinct changes in both raw and filtered 
products and would reveal considerable image smoothening   in  all  of the algorithms. 
 
The JERS-1 raw image has a  very speckled nature. With subsequent  filtering however, there could be 
observed substantial smoothing in all images. The mode-filtered images have a particularly blotchy and 
almost “blocky” appearance.  This is because the mode filtering algorithm considers the greatest 



frequency of brightness values.  Examining the  raw brightness value of the said images  would show 
that indeed the DN values of the mode-filtered images are  mostly of the same ranges in values.  
 
Comparing the  PoLeS–filtered with that of the mean and median-filtered images would show that 
although there is an apparent removal of noise by value smoothing, however, the  PoLeS  method 
preserves most of the edges.  This effect is evident in all the four test satellite images. 
    
The reduction in image sharpness may not be as similar as that which can be seen with  the  Landsat 
images taken over areas in Jordan.  The sixteenth line drop-outs which is more apparent in the  channel  
7 (thermal) is still apparent in all the images filtered with the different templates.   This  can be explained 
by the fact that the standard deviation values have not been significantly changed  from its original value  
of 8.742, by the various filtering methods. 
 
The NOAA images of August 1984 are of particular interest in this study, because of the fact that said 
images contain systematic noise. In the upper  western regions of the  African continent can be seen  
vestiges of high value   
noise, left by the daily compositing process. These  appear as strips of white  pixels. 
 
Similar results can be visually observed with the application of the various filter types on  NOAA-AVHRR  
NDVI data.  Visually, there is substantial  removal of  the high value noise in the mean, median and 
mode filtered images, with the apparent complete removal of high value noise.  However, upon 
examination of the  actual filtered NDVI values and the respective standard deviation values, it could be 
revealed that the PoLeS method lowers the over-all  variability of the image data. The original  standard 
deviation of the raw image data is 0.6320, while that of the PoLeS-filtered image is 0.406. 
 
3.2  Behavior of  Standard deviation  and effect on Image Data Variability 
 
Table  1 shows the values of the minimum, maximum and standard deviations  of image data, filtered 
through different means, to wit, median, mean, mode  and PoLeS methods. In all cases, substantial 
reduction of  image variability can be observed, as shown by the tapering value  of the  standard 
deviations.   
 
The  standard deviations  of PoLeS-filtered  data  are  lowest  for  Landsat,  JERS-1 NOAA datasets, 
indicating that the overall variability inherent in the original data are diminished.  The  plots  of the mean, 
maximum, and minimum values shown in Figure 6 would clearly show this tapering in the overall values 
of the standard deviation, as a consequence of  changes in the overall data maxima and minima  after 
filter with PoLeS. 
 



 
SPOT DATA WITH 
GAUSSIAN NOISE 

RAW MEAN 
FILTERED 

PoLeS 
FILTERED 

MEDIAN 
FILTERED 

MODE 
FILTERED 

COMPUTED 
AVERAGE 

127.616 127.617 121.742 128.232 123.764 

STANDARD 
DEVIATION 

24.537 14.459 
 

16.779 
 

14.977 
 

19.972 
 

MINIMUM VALUE 0 74 45.19 71 0 
MAXIMUM VALUE 255 182 190.67 184 255 

   (a)   
LANDSAT DATA RAW MEAN 

FILTERED 
PoLeS 

FILTERED 
MEDIAN 

FILTERED 
MODE 

FILTERED 
COMPUTED 
AVERAGE 

90.9630 90.9630 86.77 90.879 90.352 

STANDARD 
DEVIATION 

8.742 
 

8.156 
 

8.105 
 

8.281 
 

8.608 
 

MINIMUM VALUE 36 44 37.43 42 42 
MAXIMUM VALUE 131 125 121.19 125 126 

   (b)   
JERS-1 DATA RAW MEAN 

FILTERED 
PoLeS 

FILTERED 
MEDIAN 

FILTERED 
MODE 

FILTERED 
COMPUTED 
AVERAGE 

37.0300 39.166 25.370 37.030 33.459 

STANDARD 
DEVIATION 

21.094 22.352 
 

15.509 
 

21.094 
 

24.368 
 

MINIMUM VALUE  6 8 0 6 0 
MAXIMUM VALUE 243 226 165 243 255 

   (c)   
NOAA NDVI DATA RAW MEAN 

FILTERED 
PoLeS 

FILTERED 
MEDIAN 

FILTERED 
MODE 

FILTERED 
COMPUTED 
AVERAGE 

-0.412 -0.412 -0.267 -0.413 -0.426 

STANDARD 
DEVIATION 

0.6320 0.624 
 

0.406 
 

0.630 
 

0.630 
 

MINIMUM VALUE -1.016 -1.016 -0.9364966 -1.016 -1.016 
MAXIMUM VALUE 0.99200 0.79 0.6716253 0.816 0.992 

   (d)   
 
 
 

Table1. Shows the changes in the overall image statistics, as measured by the change in the value of the image 
mean before and after filtering processes; (a) SPOT;(b) LANDSAT; (c) JERS-1; and (d) NOAA-AVHRR. 
Note that for  a, b, and c the values represent brightness (DN) values,  while for d the actual NDVI values 
(ranging from –1 to +1). 



 
 
 
 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  

(g) (h) 

Fig. 1.  Illustration of the effect of PoLeS filtering on different image sources (a) original image of JERS-1 over 
Panay Island Philippines; (b) filtered image; (c) original image of LANDSAT over Jordan; (d) filtered image; (e) 
SPOT with Gaussian noise; (f) filtered image; (g) NOAA-AVHRR NDVI image over western Africa with systematic 
noise; (h) filtered image  



4.  CONCLUSIONS 
 
The PoLeS two-dimensional filter is comparatively effective in reducing high and low value noise in 
satellite image data, as that of the conventional/traditional filters, to wit, the mean, median, and mode 
filters.   
 
The over-all effect of the PoLeS filter is that of image smoothing, thereby generally, lowering the overall 
variability inherent in the original image data, as shown by the  change (lower) in the standard deviation 
values of the PoLeS-filtered. Visually, PoLeS-filtered images are smoothened images. However, as 
compared to mean- and mode -filtered images, the PoLeS moderately preserves edges. 
 
While this research has focused on the effect of  PoLeS filtering on two-dimensional data, future 
research can be made to assess the PoLeS filter’s effects in the  classification and accuracy of the 
classified  satellite image products. 
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