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ABSTRACT: Building extraction with model-image fitting has proved a promising approach to acquiring 
3D data of buildings from aerial images. The currently most favorable method for model -image fitting is 
LSMIF (Least-square Model-image Fitting), which is an iterative approach and much relies on given a 
good approximation. This paper proposes the use of genetic algorithms (GA) for model-image fitting, so 
as to relieve the dependence on good approximation. In this paper, buildings are reconstructed part by 
part by fitting each parameterized CSG (Constructive Solid Geometry) primitive to the edge pixels of aerial 
images. The shape and pose parameters associated to a primitive provide a link between perception 
(images) and prior knowledge (primitive) of a building part, so that the fitting method solves the 
parameters for the optimal fitting. To form a whole building, building parts are combined using CSG 
Boolean set operators. Consequently, a building is represented by a CSG-tree in which each node links 
two branches of combined parts. This paper will present the theory of the GA method for model-image 
fitting and analyze its performance as well. Both of the fitting methods will be tested on some 
demonstrating examples and compared based on the test results. 

1. INTRODUCTION 

Model-based building extraction (MBBE) from aerial images has been known as a convincing approach 
to acquiring  precise, reliable and complete 3D data of buildings (Braun, et al., 1995 ; Brenner, 1999 ; 
Vosselman and Veldhuis, 1999). Model-image fitting plays the central role in MBBE. It requires a 
computer algorithm that is able to determine the pose and shape parameters of a building m odel such that 
the edge lines of the wire frame, as projected onto the images, are optimally coincided with the 
corresponding edge pixels. In other words, with known image orientation, the objective of model-image 
fitting is to find the optimal alignment between the model and overlapped images. This procedure is 
equivalent  to the photogrammetric mapping procedure. It delivers the geometric properties of an object 
determined by the parameterized model. Attempts to solve the problem of model-image fitting date back 
to the work of Sester and Förstner (1989). By fitting projected model to image, the transformation 
parameters of a building model are determined using a clustering algorithm followed by a robust 
estimation. This budding research work has marked an important step toward MBBE, although the 
algorithm is restricted to fit a model to single image rather than multiple images. Concurrently developed 
in the field of computer vision for model-based vision, Lowe (1991) proposed a least-squares algorithm 
to solve for projection and model parameters that will best fit a 3D model to matching 2D image features. 
Lowe’s study set up the fundamental theory of the least-squares model -image fitting (LSMIF) for generic 
applications. This rigorous fitting algorithm has been recognized as a key to deal with MBBE (Vosselman 
and Veldhuis, 1999 ). However, it relies on a good initial approximation of the unknowns to apply LSMIF. 
This paper proposes the use of genetic algorithms  (GA) for model-image fitting, so as to relieve the 
dependence on a good unknown approximation. 

The GA theory was first proposed by Holland (1975). Thereafter, GA was applied in many optimization 
problems. They are inspired by the mechanics of natural genetics and natural selection where stronger 
individuals are likely to survive in competing environment. The unknown parameters will be coded as a 
finite -length string in the binary form and are regarded as the genes of a chromosome. A string, therefore, 
represents the potential solution of the optimization problem . By generating a set of strings, the GA 



algorithm applies three operators, reproduction (selection), crossover and mutation, to evolve better 
generations. This paper will present the theory of the GA method for model -image fitting and the design 
of fitness function. With the demonstration of some test examples, its performance will be analyzed in the 
aspects of approximation requirement and fitting accuracy compared with the LSMIF method. 

In this paper, CSG modeling is employed to represent buildings. Buildings are composed of a 
combination of volumetric primitives. A primitive is a  predefined simple solid model to determine the 
intrinsic geometric properties of a building part, and is associated with  some transformation parameters 
to perform scaling, rotation and translation. Based on this building representation, the optimal 
model-image fitting is the key component in the workflow (Figure 1) of the previously proposed MBBE 
approach (Tseng and Wang, 2001). 

  
  

Primitive 
Selection 

Interactive 
Approximate 

Fitting 

Optimal 
Model-image 

Fitting 

CSG Boolean 
Operation and 

Local 
Modification 

Model Base 

Completed 

Yes 

No 
 

Figure 1: The workflow of the proposed MBBE approach. 

2. MODEL-IMAGE FITTING 

2.1  Definition of Primitives 
A primitive is a pre-defined simple solid model, which determines the intrinsic geometric property of an 
object part. A model may be described as a polyhedron or a combination of several defined models. Each 
primitive is associated with a set of parameters that can be categorized into shape  parameters and pose 
parameters. Parametric changes would not affect the intrinsic geom etric properties. For example, a 
solid-box primitive is able to represent a rectangular building (or building part) with the shape parameters 
of length ( l ), width (w), and height (h), as shown in Figure 2. Different primitive models will be associated 
with different shape parameters. Unlike the shape 
parameters, pose parameters are not associated to 
the changes in size or shape, but define the position 
and orientation of a primitive in the object space. In a 
three-dimensional space, it is adequate to use 3 
translation parameters (dX, dY, dZ) and 3 rotation 
parameters, tilt, swing, and azimuth (t, s, α), to depict 
the position and orientation of an object. However, 
most buildings should be kept vertical, so that the tilt 
and swing parameters can be turned off . Therefore, 
one can use 4 pose parameters (dX, dY, dZ, α ) for all 
kinds of building primitives ( Vosselman and Veldhuis, 
1999). 

2.2  Fitting Principle and Coordinate Systems 

The principle of model -image fitting is to adjust shape and pose parameters so as to fit the boundary lines 
(after projection) of a model with the corresponding edge pixels extracted from the images. The 
coordinate systems involved in this approach include model, object, photo, and image  coordinate 
systems (Figure 3). Transformations between coordinate systems can be implemented based on the 
associated parameters indicated in Figure 4. Through the coordinate transformation, the fitting can be 
performed in the photo coordinate system. 
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Figure 2: The graphical description of a box primitive 

and associated shape and pose parameters. 
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Figure 3: Coordinate systems involved in the fitting algorithm and their relationship. 

 

A primitive is defined in the model coordinate system, and can be transformed into the object space in 
accordance with the shape and pose parameters to represent a building part. The transformation 
sequence should be shaping, rotation, and translation. The transformation will only alter the vertex 
coordinates. However, each vertex is affected by the parameters differently. A building object can be 
further transformed into a 2D photo  coordinate system in accordance with the known exterior  orientation 
through a central projection. This transformation can be implemented by using the collinearity condition 
equations to project all of the vertices onto the photo plane. Furthermore, extracted edge pixels in the 
image coordinate system can be transformed into the photo coordinate system in accordance with the 
interior orientation. The model -image fitting becomes  possible through those geometrical transformation 
processes. 

2.3  Least-Squares Model Image Fitting (LSMIF) 

The LSMIF method solves the shape and pose parameters so that the sum of the perpendicular distances 
from the edge pixels to the projected model edge lines is minimized. The summation involves the total 
numbers of model edge lines ( I ), overlapped photos ( J), and extracted edge pixels (K). Let a model edge 
line i  be projected onto a photo j. The two end points of the projected edge line can be labeled as vij1(x  ij1, 
y  ij1) and vij 2(x  ij2, y ij 2). If an extracted edge pixel k from photo  j , it is labeled as Tjk(xkj , ykj). The distance from 
the edge pixel to the projected model edge line (Figure 5) can be formulated as Equation (1), and the 
objective function is to minimize the sum of squares of the distance as Equation (2). Equation (3) shows 
the necessary condition for q to be minimum, which forms the normal equations of the least squares 
adjustment. Some model edge lines may be excluded from the calculation due to self-occlusion, which 
can be found automatically through the calculation o f projection. By providing approximate values of the 
shape and pose parameters, it would also be reasonable that only the edge pixels distributed within a 
buffer zone (Figure 4) of the projected edge lines are used for calculation. The use of buffer enables us 
to screen out irrelevant pixels. 
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In practice, we take derivative of Equation (1) at each unknown parameters, and form the normal 
equations using matrix operations.  Equation (1) is a non-linear function with respect to the unknown 
parameters. For the box primitive, Equation (2) can be rewritten as dijk  = Fi jk(w, l , h, á, dX, dY, dZ). The 
typical solution of a non-linear least squares adjustment is to apply the Newton’s method. Using the first 
order Tyler expansion, the non-linear equation can be linearized as the function of the increments of 
parameters. Given a set of initial approximations, the unknown parameters are updated iteratively by the 
calculated increments. The linearized form can be expressed as: 
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In Equation (4), F ijk0 is the approximation of the function Fijk, and (�w, �l , �h …) are the increments of 
unknown parameters. The linearized equations can be expressed as a matrix form: V=AX-L, where A is 
the matrix of partial derivatives; X is the vector of the increments; L is the vector of approximations; and 
V is the vector of residu als . The objective  function actually can be expressed as q=VTV . For each iteration, 
X can be solved by the matrix operation: X=(ATA)-1ATL. The iteration normally will converge to the correct 
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Figure 5. Diagrams of (a) the uniform-crossover and 
(b) the bit mutation mechanism. 

answer. However, inadequate relevant image features, affected by irrelevant features or noise, or given 
bad initial approximations may lead the computation to a wrong answer. 

3. MODEL-IMAGE FITTING USING GENETIC ALGORITHMS 

The first step to apply a GA is to set up the functions of the following components: the chromosome 
representation and genetic operators, fitness function, as well as the algorithm design including the 
creation of the initial population, termination rule, population size, crossover rate (Pc), and mutation rate 
(P m), etc. The following subsections explain how those components are designed for model-image fitting. 

3.1  Chromosome Representation and Genetic Operators 
An optimization problem conventionally is modeled as a mathematic function of a set of parameters. In a 
GA, the parameters are coded as a finite -length binary string imitating a chromosome. Therefore, a 
chromosome represents a possible solution of the problem. A fitness value can be computed with the 
mathematic function to evaluate how good the solution provided by a chromosome, so that the selection 
of superior chromosomes can be performed based on the comparison of fitness values. A GA begins with 
the creation of a randomly generated initial population, and then the population evolves according to the 
genetic operators, such as reproduction (selection ), crossover and mutation. The evolution of is repeated 
until a desired termination rule is reached. 

Reproduction is a selection process in which individual strings are kept to produce the next generation in 
accordance with their fitness values. In this paper, we applied the commonly known selection mechanism 
developed by Holland (1975) for the reproduction process, in which the probability of selection, Pj , for 
each individual j is defined by:  

     njffp jjj L,2,1     , == ∑                                   (5) 

The crossover process takes a pair of chromosomes and yields two offsprings according to an 
operation rate, and the mutation process alters one chromosome to produce a single new solution. 
The mutation process should only happen in a small probability.  Figure 6 illustrates the concept of two 
commonly used operators: the uniform-crossover (Figure 5.a) and the bit mutation (figure 5.b). The 
offspring are generated form the parents, based on a randomly generated crossover mask, so that the 
offspring contain a mixture of genes from the parents. 

The GA procedure can be summarized as the 
following: 

(1)  Starts, generation t = 0. 
(2)  Generate a population 0P  of N  individuals and 

respective fitness values, generation t = t + 1. 
(3)  Select the chromosomes in the population 

1−tP  
for crossover and mutation operations. 

(4)  Evaluate 
tP . 

(5)  Repeat step 4 to 6 until termination. 
(6)  Ends the procedure.  

3.2  Fitness Functions 

The design of the fitness function is essential for a GA to search for the optimal solution. The intuitive 
fitness function is the least-squares solution, i.e., minimizing the function in Equation (2). However, this 
calculation is based on an assumption that edge pixels screened using a buffer of a model edge line 
should correspond with the real edge line of the object. This assumption is valid only when the parameters 
are approximately known, so that it works for the LSMIF solution. I t is not the case when a GA is applied. 
A set of randomly generated values of the parameters could be quite different from the correct numbers. 
Under this circumstance, how many correctly correspondent edge pixels captured by the buffer becomes 
an importan t factor. When a chromosome represents a set of parameter values far different from the 
correct numbers (i.e., few correspondent pixels are found), it may lead to two extreme cases. The first 
case is that a large number of irrelevant pixels are caught, and  the calculation of Equation (2) would result 
in a large value indicating a bad fitting. However, the other case is that very few pixels are caught, and the 
calculation results in a small value indicating a good fitting. The former case makes a correct indication, 
but the later case will mislead the solution. Therefore, an elaborate fitness function is requited. 

We propose a fitness function, which takes the number of edge pixels in the buffer, the length of projected 
edge line, as well as the sum of the perpendicular distances from the edge pixels to the projected edge 
line into account. First, for each visible model edge line, a fitness fraction si  is calculated by Equation 



(6) as a contribution to the fitness function. This follows the basic idea of least squares fitting. Then, 
each si will be modified based on the number of edge pixels ni found inside the correspondent buffer. 
The modification will be made based on a consideration of the number of pixels expected and the 
maximum contribution of an si, Max

in and 
maxis , which are functions of the length of the projected edge 

line, Li . For example, Max
in  can be Li  divided by pixel size and ∑= iii LLs

max
. Equation (7) shows the 

modification proposed. Therefore, the final fitness value is the summation of the modified fitness 
fraction *

is of each visible model edge line in images. Equation (8) shows the fitness function of the 

model parameters represented by vector x, in which N is  the total number of visible edge lines in all of 
the involved images. 
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The range of fitness value of equation (7) is within [0,1]. The GA is, therefore, designed to search for 
the maximum value of the fitness function, which corresponds to find the optimal solution of the 
parameters. 

3.3  Algorithm Design 

l Searching Ranges of the Model Parameters 

A GA is usually designed to seach for the optimal solution within a seach ing range of each parameter. 
Approximate values are needed to define the searching ranges. If wide searching ranges are used, 
the approximations can be very rough. On the contrary, good approximations are required. However, 
the wider searching range, the l arger ammount of calculation needed and the higher properbility to find 
a wrong solution. In general, a GA does not rely on good approximations as LSMIF does. In this study, 
4 cases of searching range assigment were tried for each test: 3± (case a )� 5± (case b)� 8± (case c)�

10± (case d). The unit of the seaching will be meter for length and degree for angle. 

l Genetic Operators, and Genetic Parameters. 

In this study, the searching range of each parameter is coded into an 8-bit binary string. A chromosome 
is then composed of all binary strings of the parameters. For example, a box model has 7 parameters ( w, 
l, h, á, d X, dY, dZ), which can be coded into a binary string. The precision of parameter d etermination will 
be the function of the searching range and the string length. For instance, the precision of the case d will 
be 0.078 m  for length and 0.078 deg for angle. Roulette wheel selection is used to choose individuals from 
the population generated by crossover. Elitism mechanism (ref) is used for the generational replacement, 
which ensures the preservation of the fittest subpopulation for the next generation. In our tests, 10 
percent of the best individuals were preserved for the next generation. To keep the amount of variation 
for the explored solution and consider the convergence speed of fitness value, the uniform-crossover 
is applied. The termination rule is simply a setting of a specified maximum number of generations. 
Based on the tests , the maximum generation number can be set as inbetween 200 and 1000 in 
consideration of applied searching range. For the setting of the crossover rate (Pc), and mutation rate 
(P m), we adopt the suggestion proposed by Goldberg (1989), i.e., Pc and Pm are in the  ranges of 
[0.6,1.0] and [0.001,0.1] respectively.   

4. EXPERIMENTS 

Several model-image fitting tests, for the box and gable-roof primitives, have been studied. The test aerial 
photos have the image scale of 1 to 5000, and were scanned into digital images with  25�m resolution 
(12.5 cm on the ground). The exterior orientation parameters of the photos were determined by aerial 
triangulation. In this section, we demonstrate two examples first, for a box and gable-roof primitives  
respectively, in which the performance of calculation convergence is analyzed. Then, how the occlusion 
problem affects the solution is investigated. Finally, the fitting accuracy of the results from the applications 
of GA and LSMIF will be compared. 

4.1 Examples of Model-image Fitting Using GA  

The first example is fitting a box primitive to a stereo image pair. For the GA parameter setting, the 
population size is 100, Pc =0.8, and P m =3/56. Within 500 generations, using any case of the test 
searching ranges can converge to the correct answer. For the searching range case d, Figure 6.a and 
6.b show the 5 best solutions of the first and 500th generation respectively. Figure 6.c shows the 



curves of the average and the best fitness values with respect to the generation number. Figure 6.d 
shows the fitting result and the 4 check  points . The second example is fitting a gable-roof primitive to a 
stereo image pair. For the GA parameter setting, the population size is 100, Pc =0.8, and Pm =5/56. 
Perhaps, because the additional parameter (rh) is highly correlated with the dZ and h  parameters and 
the roof tile of the building presents a lot of ignoring edge pixels, the narrowest searching range (case 
a) is required to obtain correct solution. It means that it needs a good approximation for the solution. 
Nevertheless, this approximation requirement is still not so strict as required in using LSMIF, which 
usually has a pull-in range of 2± m for each parameter.  Figure 7 shows the fitting result and the 4 check  
points . 

(a) (b) 

(c) 

 

(d) 
Figure 6: An example of fitting a box primitive to a stereo pair. (a) The 5 best solutions of the first 
generation; (b) The 5 best solutions of the 500 th generation; (c) The curves of the average and the 
best fitness values with respect to the generation number; (d) The fitting results from the calculation of 
500 generations. 

4.2 Occlusion Example 

Building edges are frequently occluded in an image, and some of them may be critical in determine a 
certain parameter. Consequently, model-image fitting will be failed. One way to fix this problem is to 
predetermine those weak parameters using other observations. For example, the bottom  edges of a 
building are frequently invisible in an aerial image, so that the dZ parameter cannot be well determined 
in the solution. Under this circumstance, this parameter should be predetermined, so that we can set a 
very narrow searching range for the parameter in the GA depending on how accurate the parameter is 
observed. This is similar to set a weight constraint on a certain parameter in LSMIF (Tseng and Wang, 
2001). Figure 8 shows an example that needs 2 constraints for fitting. The first constraint is given for 
the dZ parameter due to the bottom edges of the building are occluded, and the second constraint is 
given for the w parameter to prevent the fitting to the shadow edge indicated in Figure 8. 
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Figure 7: The example of fitting a gable-roof 

primitive. Figure 8: An example of fitting needs constraints. 

4.3 Accuracy Assessment 

To assess the fitting accuracy, the derived 3D coordinates of the building corners from the fitting results 
are compared with manually measured data. From each test, the 4 topside corners of the buildings with 
index number 5~8 (as shown in Figures 8.d, 9 and 10) are compared. Since the GA is not a least-squares 
solution, the fitting results are different from the LSMIF results. To show the differences, we also list the 
data of LSMIF accuracy assessment together. Table  1 shows the average and RMS differences of each 
coordinate. In general, the horizontal accuracy is about 0.5m, and the height accuracy is about 1m. The 
height accuracy is lower than the horizontal accuracy due to the small base-height ratio (about 0.3) of the 
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images. 

Table1: Accuracy assessment by comparing the derived building-corner coordinates from the GA and 
LSMIF results with manual measurements. 

Coordinate X∆  (m) Y∆  (m) Z∆  (m) 

Method GA LSMIF GA LSMIF GA LSMIF 

Average Diff. 0.075 0.226 -0.055 -0.084 -0.724 -0.334 

RMS Diff. 0.417 0.360 0.371 0.309 0.730 0.583 

5. CONCLUSIONS 
A GA is applied for model-image fitting to reconstruct buildings from aerial images. The design of the 
fitness function is the key to success. The proposed fitness function has been validated by several sets 
of test data. The GA method has proved itself capable of solving the model -image fitting problem, and 
achieves the fitting accuracy as good as LSMIF. However, the GA solution is not quite stable. That the 
number of generations needed for an evolution to reach the optimal solution is also case by case. 
Furthermore, the GA needs much more computation time than LSMIF. Further study is required to 
improve the GA for a practical application. 
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